TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 2. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 216 triệu.
B. 220 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 3. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
D. aαβ = (aα )β .
A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. β = a β .
a
2
Câu 4. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 7.
D. 8.
1
Câu 5. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 6. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 7. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã √cho là√1728. Khi đó, các kích thước của hình hộp là
B. 6, 12, 24.
C. 8, 16, 32.
D. 2, 4, 8.
A. 2 3, 4 3, 38.
Câu 8. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
!
3n + 2
2
Câu 9. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 2.
B. 5.
C. 4.
D. 3.
Câu 10. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Z 3
x
a
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 11. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = −2.
D. P = 28.
Câu 12. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
3
3
3
A. .
B.
.
C.
.
4
2
12
√
3
D.
.
4
Trang 1/10 Mã đề 1
2mx + 1
1
Câu 13. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.
C. −5.
D. 1.
√
√
Câu 14.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6√− x
A. 2 3.
B. 2 + 3.
C. 3 2.
D. 3.
Câu 15. [1] Đạo hàm của làm số y = log x là
1
1
A.
.
B. y0 =
.
10 ln x
x ln 10
1
ln 10
C. y0 = .
D. y0 =
.
x
x
√
√
Câu 16. Phần thực√và phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
D. Phần thực là 1 − 2, phần ảo là − 3.
C. Phần thực là 2 − 1, phần ảo là 3.
Câu 17. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 24.
D. 144.
Câu 18. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
= a , 0 và lim vn = ±∞ thì lim
!vn
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn
8
Câu 19. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 81.
D. 82.
Câu 20. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.
C. 20.
Câu 21. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (1; +∞).
D. 30.
D. (−∞; 1).
Câu 22. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Câu 23. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
4x + 1
Câu 24. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.
C. −1.
D. 5 mặt.
D. −4.
Câu 25. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
Trang 2/10 Mã đề 1
Câu 26. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
Câu 27.
A. 2.
Câu 28.
A. 13.
B. Cả ba mệnh đề.
C. (II) và (III).
!
1
1
1
[3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
B. .
C. +∞.
2
Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
B. 0.
C. Không tồn tại.
D. (I) và (II).
D.
3
.
2
D. 9.
Câu 29. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
2
3
6
4
0
Câu 30. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
ln 2
1
A. 2.
B. 1.
C.
.
D. .
2
2
Câu 31.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f
A.
Z
C.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 32. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
C. 20.
D. 8.
Câu 33. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 34.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 35. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A.
.
B. 2a 2.
C.
.
D. a 2.
2
4
3
2
2
Câu 36. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.
D. m < 0.
Trang 3/10 Mã đề 1
Câu 37. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 27 m.
D. 1587 m.
Câu 38. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = ln x − 1.
D. y0 = 1 + ln x.
Câu 39. Hàm số nào sau đây khơng có cực trị
1
x−2
.
B. y = x + .
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
A. y =
2x + 1
x
Câu 40. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 4.
D. 0, 2.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 41. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 − 19
2 11 − 3
9 11 + 19
18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
Câu 42. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = 0.
D. m = −3.
2
ln x
m
Câu 43. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 135.
D. S = 22.
Câu 44. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −9.
C. −5.
D. −12.
Câu 45. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 10.
D. 2.
A. 1.
B. 2.
Câu 46. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B. 68.
C. 5.
D.
.
A. 34.
17
Câu 47. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
3
3
3
a
3
a
a
3
A. a3 .
B.
.
C.
.
D.
.
3
3
9
Câu 48. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 49. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 3.
C.
.
D. a 6.
2
Câu 50. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
Trang 4/10 Mã đề 1
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 51. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
23
1637
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 52. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
23
5
B.
.
C.
.
D. −
.
A. − .
16
100
25
100
Câu 53. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
A. P = 2i.
B. P = 2.
C. P =
.
D. P =
.
2
2
Câu 54. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
a3 3
2a3 3
5a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 55. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
cos n + sin n
Câu 56. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 0.
D. 1.
Câu 57. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
D. f 0 (0) = ln 10.
ln 10
Câu 58. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 6.
D. V = 5.
log2 240 log2 15
−
+ log2 1 bằng
Câu 59. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
Câu 60. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 61. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.
C. 12.
Câu 62. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 6.
D. 3.
Câu 63. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Trang 5/10 Mã đề 1
Câu 64. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
√
Câu 65. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a3
a3 3
a 3
.
B.
.
C.
.
D. a3 3.
A.
12
4
3
log(mx)
Câu 66. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 67. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 7.
C. .
D. 5.
A.
2
2
Câu 68. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.
C. −6.
2
D. 6.
Câu 69. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 12.
C. 27.
D. 18.
A.
2
x
Câu 70.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. 1.
D. .
2
2
2
Câu 71. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Câu 72. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
3
2
Câu 73. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.
C. 8.
1
Câu 74. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. −2.
D. V = S h.
D. 4.
D. 2.
Câu 75. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
Câu 76. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 2 nghiệm.
B. 1 nghiệm.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
√
4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 3 nghiệm.
D. Vô nghiệm.
Trang 6/10 Mã đề 1
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−∞; −3].
D. (−3; +∞).
π π
3
Câu 78. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. 3.
D. −1.
Câu 77. [4-1212d] Cho hai hàm số y =
Câu 79. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện đều.
Câu 80. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 3.
D. 6.
2−n
Câu 81. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 2.
C. −1.
D. 1.
Câu 82. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3
√
a 3
a 2
a 3
.
B.
.
C. a3 3.
.
A.
D.
2
4
2
Câu 83. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 84. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 85. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 5.
C. 9.
D. 0.
Câu 86. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 =
.
C. y0 = x
.
D. y0 = 2 x . ln x.
ln 2
2 . ln x
Câu 87. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 88. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
Câu 89. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.
D. 0, 8.
Câu 90. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
a 7
11a2
a2 2
a2 5
A.
.
B.
.
C.
.
D.
.
8
32
4
16
Trang 7/10 Mã đề 1
Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
3
.
B.
.
C. a 3.
.
A.
D.
6
3
3
Câu 92. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
Câu 93. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
C. +∞.
B. 1.
D. 2.
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
C.
.
D. 2017.
2018
!
Câu 94. [3] Cho hàm số f (x) = ln 2017 − ln
A.
2016
.
2017
B.
4035
.
2018
Câu 95. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
D. 10 mặt.
Câu 96. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
d = 120◦ .
Câu 97. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 4a.
D. 3a.
A. 2a.
B.
2
Câu 98. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −e2 .
C. −2e2 .
D. 2e2 .
Câu 99. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 100. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.
D. Năm mặt.
Câu 101. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
!
!
!
4x
1
2
2016
Câu 102. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T = 1008.
D. T =
.
2017
Câu 103. Tính lim
x→1
A. −∞.
x3 − 1
x−1
B. 3.
C. 0.
D. +∞.
Trang 8/10 Mã đề 1
Câu 104. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
8
48
24
24
Câu 105. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .
C. − .
D. −e.
e
e
2e
!
5 − 12x
Câu 106. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 107. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
C. 4.
2
x −9
Câu 108. Tính lim
x→3 x − 3
A. +∞.
B. −3.
C. 3.
2
3
7n − 2n + 1
Câu 109. Tính lim 3
3n + 2n2 + 1
2
C. 1.
A. 0.
B. - .
3
Câu 110. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
D. 3.
D. 6.
D.
7
.
3
D. 1 − sin 2x.
Câu 111. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Khơng thay đổi.
C. Tăng lên n lần.
D. Giảm đi n lần.
Câu 112. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 48cm3 .
D. 91cm3 .
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 113. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√
√ có độ dài bằng
A. 2.
B. 6.
C. 2 3.
D. 2 2.
Câu 114. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
B.
.
C. 6 3.
D.
.
A. 8 3.
3
3
Câu 115. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
Câu 116. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình lập phương.
D. Hình chóp.
1
Câu 117. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (1; +∞).
√
√
4n2 + 1 − n + 2
Câu 118. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. 1.
2
D. D = (−∞; 1).
D. +∞.
Trang 9/10 Mã đề 1
Câu 119. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
36
6
x=t
Câu 120. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x + 3) + (y + 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 121.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
12
6
4
√
Câu 122. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. 3.
C. −3.
D. − .
3
3
2x + 1
Câu 123. Tính giới hạn lim
x→+∞ x + 1
1
B. −1.
C. 2.
D. 1.
A. .
2
Câu 124. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a
√
√
3
3
a
a 5
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
3
25
5
25
5
Câu 125. Tính lim
n+3
A. 1.
B. 0.
C. 3.
D. 2.
2
2
2
1 + 2 + ··· + n
Câu 126. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. .
D. 0.
3
3
Câu 127. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
x−2
Câu 128. Tính lim
x→+∞ x + 3
2
A. 1.
B. −3.
C. 2.
D. − .
3
√
2
Câu 129.
√ Xác định phần ảo của số√phức z = ( 2 + 3i)
A. 6 2.
B. −6 2.
C. −7.
D. 7.
Câu 130. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.
C. 12.
D. 30.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
3.
C
5.
7.
D
11.
C
4.
C
8.
C
10.
C
D
12.
B
13. A
15.
C
6. A
B
9.
2.
C
14.
16. A
B
D
17.
19.
C
20.
21.
B
22.
23.
B
24. A
27. A
28.
29.
C
D
D
26.
C
25.
D
18.
C
B
30. A
31.
B
32. A
33.
B
34. A
35. A
36. A
37.
38.
C
39. A
D
40.
B
B
41.
B
42.
43.
B
44.
D
46.
D
45. A
47.
C
48. A
49.
D
50.
51.
D
52.
53.
55.
54.
B
C
57.
B
D
B
56.
D
C
58.
B
59. A
60.
B
61. A
62.
B
63.
C
64. A
65.
C
66.
67.
C
68.
1
D
B
69.
71.
D
72. A
B
C
73.
75.
79.
C
74.
D
77.
C
70.
76. A
78. A
C
80.
B
C
81.
C
82.
D
83.
C
84.
D
85.
C
86. A
87.
C
88.
89.
B
90. A
91.
B
92. A
D
93.
97.
96. A
B
99. A
101.
103.
C
94.
C
95.
B
C
B
98.
B
100.
B
102.
C
104.
C
105.
C
106.
D
107.
C
108.
D
109.
110. A
B
111.
D
112.
113.
C
114.
115.
C
116. A
117.
C
118.
119.
B
120. A
121.
B
122. A
123.
B
C
C
124.
C
125.
B
126.
127.
B
128. A
129. A
130.
2
D
C
C