Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (129)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.05 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.

C. 20.

D. 30.

Câu 2. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên sai.



C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.
1
Câu 3. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
Câu 4. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
A. un =
.
B.
u
=
.
n
5n + n2
n2

C. un =

n2 + n + 1
.
(n + 1)2

D. un =

n2 − 2

.
5n − 3n2

Câu 5. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.

C. 4.

D. 1.

Câu 6. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 4.

D. 8.

Câu 7. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.

C. 4.


D. 5.

Câu 8. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
3

2

Câu 9. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 2.
C. 1.
D. 7.
Câu 10. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
;3 .
D. 2; .
A. (1; 2).
B. [3; 4).
C.
2

2


ab.

Câu 11. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 4.
D. 12.
Trang 1/10 Mã đề 1


1

Câu 12. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = R \ {1}.

x2 + 3x + 5
Câu 13. Tính giới hạn lim
x→−∞
4x − 1
1
B. 0.
C. 1.
A. − .
4

Câu 14. Hàm số nào sau đây không có cực trị
x−2
A. y = x3 − 3x.
B. y =
.
2x + 1

C. y = x4 − 2x + 1.

D. D = (−∞; 1).

D.

1
.
4

1
D. y = x + .
x

1
Câu 15. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3.
D. m = −3, m = 4.

Câu 16. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 22.
D. 21.
Câu 17. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [−1; 2).
C. [1; 2].

D. (−∞; +∞).

Câu 18. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.

D. D = R \ {0}.

C. D = (0; +∞).

Câu 19. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = −5.
log7 16
bằng
Câu 20. [1-c] Giá trị của biểu thức
log7 15 − log7 15

30
A. −4.
B. 2.
C. −2.

D. x = 0.

D. 4.

Câu 21.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
xα+1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z x
Z
C.

dx = x + C, C là hằng số.

D.

0dx = C, C là hằng số.

x−1

có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √

A. 2 2.
B. 2.
C. 6.
D. 2 3.

Câu 22. [3-1214d] Cho hàm số y =

Câu 23. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
12
4
6
12

Câu 24. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Câu 25. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3
3
3
2a
4a
4a 3
2a3 3
A.
.
B.
.
C.
.

D.
.
3
3
3
3
Trang 2/10 Mã đề 1


Câu 26. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.

C. 24.

D. 4.

Câu 27. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 5.
C. 68.
D. 34.
17
Câu 28. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là

A. ln 14.
B. ln 10.
C. ln 4.
D. ln 12.
Câu 29. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 20.
D. 15, 36.
5
Câu 30. Tính lim
n+3
A. 0.
B. 2.
C. 1.
D. 3.
Câu 31. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. Vơ số.
D. 2.
x−2
Câu 32. Tính lim
x→+∞ x + 3
2
A. 1.
B. −3.

C. − .
D. 2.
3
Câu 33. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 34. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
1
Câu 35. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 36. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.

.
D.
.
c+2
c+1
c+2
c+3
Câu 37. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 3.
D. 0.
Câu 38. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
Câu 39. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

D. {3; 3}.
2

2

sin x
Câu 40. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x √
lần lượt là

√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 41. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Trang 3/10 Mã đề 1


1
Câu 42. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 43. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3
3


a
a
a
6
5
15
B.
.
C.
.
D.
.
A. a3 6.
3
3
3
Câu 44. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 9 mặt.
1
Câu 45. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 46. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các

mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).

C. Cả ba mệnh đề.

D. (I) và (II).

Câu 47. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.

1
B. lim √ = 0.
n

1
= 0 với k > 1.
D. lim un = c (Với un = c là hằng số).
nk
Câu 48. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.

C. lim

Câu 49. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.
D. 10 mặt.
1 + 2 + ··· + n
Câu 50. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 1.
D. lim un = .
2
0 0 0 0
Câu 51. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9

18
6
15
Câu 52. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 13.
D. 0.
Trang 4/10 Mã đề 1


Câu 53. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
a3
a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3

3
6
Câu 54. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 5}.

D. {5; 3}.

Câu 55. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.

D. Thập nhị diện đều.

Câu 56. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Câu 57. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. −2.
Câu 58. Dãy số nào sau đây có giới hạn khác 0?
1
1
B. .
A. √ .
n

n

C.

n+1
.
n

D. 4.

D.

sin n
.
n

Câu 59. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.

D. 5 mặt.

Câu 60. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

D. Khối 12 mặt đều.

C. Khối tứ diện đều.

 π
x
Câu 61. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2

2 π4
1 π3
e .
A. 1.
B.
C. e .
2
2


3 π6
e .
D.
2

Câu 62. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
Câu 63. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −5.

D. −15.
1 − 2n
bằng?
Câu 64. [1] Tính lim
3n + 1
2
1
2
A. 1.
B. .
C. .
D. − .
3
3
3
Câu 65. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 2.

D. 3.

Câu 66. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 3.

D. 0.

d = 300 .

Câu 67. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.3 √
3

3a 3
a 3
A. V =
.
B. V = 6a3 .
C. V =
.
D. V = 3a3 3.
2
2
Câu 68. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối tứ diện đều.
Trang 5/10 Mã đề 1


d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 69. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là





a3 2
a3 3
a3 3
2
B.
A. 2a 2.
.
C.
.
D.
.
24
24
12
Câu 70. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≥ .
D. m ≤ .
A. m > .
4
4
4

4
! x3 −3mx2 +m
1
Câu 71. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ (0; +∞).
D. m ∈ R.
Câu 72. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.
√3
4
Câu 73. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
7
B. a 3 .
C. a 8 .
A. a 3 .

D. m = −1.
2

D. a 3 .


Câu 74. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
x
x+1
x−2 x−1
Câu 75. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
4x + 1
Câu 76. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
C. −1.
D. 4.

8
Câu 77. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 81.
D. 64.
Câu 78. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
A.
.
B. 2 13.
C. 2.
D. 26.
13

Câu 79. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là


3
3

a3
a

3
a
3
.
B. a3 3.
C.
.
D.
.
A.
4
3
12
x2 − 3x + 3
Câu 80. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 3.
C. x = 0.
D. x = 1.
Câu 81. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

= aβ .
β
a
x
y

Câu 82. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 12.
C.
.
D. 27.
2

A. aα bα = (ab)α .

B. aαβ = (aα )β .

C. aα+β = aα .aβ .

D.

Trang 6/10 Mã đề 1



Câu 83. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6

a3 6
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
6
18
36
6
Câu 84. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 85. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
Câu 86. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.


D. 9 mặt.

Câu 87. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
log2 240 log2 15
Câu 88. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.
C. 1.
D. 3.
Câu 89. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C.
.
D. a 3.
A. 2a 6.
2

Câu 90. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 5.
D. V = 6.
Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √



a3 3
a3 3
2a3 3
3
.
B. a 3.
C.
.
D.
.
A.
3
3
6
2mx + 1
1
Câu 92. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng

m−x
3
A. −2.
B. 0.
C. −5.
D. 1.
Câu 93. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 94. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 95. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.

C. 8.

D. 6.

Câu 96. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 97. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.

C. 5.


Câu 98. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x

A. 2 + 3.
B. 3.
C. 3 2.

D. 9.

D. 2 3.
Trang 7/10 Mã đề 1


Câu 99. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ

ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
.

B.
.
C.
.
D.
.
A.
12
4
6
12
Câu 101. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. 1.
B. .
C. .
D.
.
2
2
2
Câu 102. [2] Đạo hàm của hàm số y = x ln x là
B. y0 = ln x − 1.
C. y0 = 1 + ln x.
D. y0 = x + ln x.
A. y0 = 1 − ln x.
Câu 103. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √

với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
24
8
Câu 104. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.
C. 10.
D. 4.
Câu 105. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.

C. Khơng có.
D. Có hai.
Câu 106. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.

D. 27.

Câu 107. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD


3
10a
3
A. 20a3 .
B. 10a3 .
C.
.
D. 40a3 .
3
Câu 109. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5

z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 110. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e

Câu 111. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.

C. 108.

D. m =

1 − 2e
.
4 − 2e

D. 4.
Trang 8/10 Mã đề 1


Câu 112. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m


A. 16.
B. 8 2.
C. 8 3.
D. 7 3.
!2x−1
!2−x
3
3
Câu 113. Tập các số x thỏa mãn


5
5

A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
D. (+∞; −∞).
π
Câu 114. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2 3.
C. T = 2.
D. T = 4.
A. T = 3 3 + 1.
Câu 115.
Các khẳng định nàoZsau đây là sai?
Z

f (u)dx = F(u) +C. B.

Z

k f (x)dx = k
f (x)dx, k là hằng số.
!
Z
Z
Z
0

C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).

A.

f (x)dx = F(x) +C ⇒

Z

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.

Câu 116. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 117. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

D. {5; 3}.


Câu 118. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với

đáy (ABC)
tích khối chóp S .ABC là √
√ một góc bằng 60 . Thể

3
a 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
8
4
4
12
1
Câu 119. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.

D. 2 < m ≤ 3.
Câu 120. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 8, 16, 32.
B. 6, 12, 24.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
x+1
bằng
Câu 121. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
3
4
m
ln2 x
Câu 122. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

C. S = 24.
D. S = 135.
2
x −9
Câu 123. Tính lim
x→3 x − 3
A. +∞.
B. 3.
C. −3.
D. 6.
Câu 124. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

C. 3.

D. 4.

Câu 125. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Trang 9/10 Mã đề 1


Câu 126. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a

A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 127. [1] Đạo hàm của làm số y = log x là
1
ln 10
A. y0 =
.
B. y0 =
.
x
x ln 10

1
D. y0 = .
x
x−1 y z+1
= =

Câu 128. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2

1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
C.

1
.
10 ln x

Câu 129. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. − .
e
2e
e

D. −e.

2

Câu 130. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là

A. 1 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.

D. 2 − log2 3.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.

B

4. A

5.

B


6.

7.
9.

C

C

10.
D

12. A

13. A

14.

15.

D

16.

17.

D

18. A


19. A

B
C

20. A
B

23.
25.

D

8. A

B

11.

21.

C

D
B

22.

D


24.

D

26. A

27. A

28. A

29.

D

30. A

31.

D

32. A

33.

D

35.

36. A


B

37. A

38.

39.

D

40.

B

41. A

42.

B

43.

44.

D
B

45. A

C


46.

D

47. A

48.

D

49. A

50.

D

52.

53. A

D

54.

55.

D

57.


C

56. A
58.

C

C

59.

B

60.

61.

B

62.

63.

B

64.

D


65. A

66.

D

67. A

68. A

69.

70.

B
1

B
C

D


71. A
D

73.
75.

72.


C

74.

C

77.

C

78. A

79.

C

80.
D

81.
83.

D

76.

B

D


82. A

B

C

84.

85.

D

87.

B
B

88.

B

89.

90.

B

91.


92.

B

93.

D

95.

D

97.

D

94. A
96.

B

99.

C

98.
100.

D


102.
104. A

C

B

105.

B

109. A
113.

114.

D
B

117.

B

119.

120.

B

121.


122.

B

123.

124.

D

D
B
D

125.

126. A
130.

C

115. A

118. A

128.

D


111.

B

112. A
116.

103.
107. A

108. A
110.

C

101. A

C

106.

C

B
D

2

C


127.

B

129.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×