TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
d = 30◦ , biết S BC là tam giác đều
Câu 1. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
13
16
9
Câu 2. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.
D. m < 0.
Câu 3. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −12.
D. −5.
Câu 4. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàmZtrên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 5. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một góc bằng 60◦ . Thể tích√khối chóp S .ABC là
√
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
12
8
4
Câu 6. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.
D. −1 + sin x cos x.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 7. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 4.
C. 7.
D. 1.
√
x2 + 3x + 5
Câu 8. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 0.
C. 1.
D. .
4
4
Câu 9. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.
2
3
Câu 10. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 11. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 10.
D. 27.
Câu 12. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
D. 12.
C. 20.
Trang 1/10 Mã đề 1
[ = 60◦ , S O
Câu 13. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S BC) bằng
√
√ với mặt đáy và S O = a.
√
a 57
a 57
2a 57
.
B.
.
C. a 57.
D.
.
A.
19
19
17
[ = 60◦ , S O
Câu 14. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng
√
√
a 57
2a 57
a 57
B.
A. a 57.
.
C.
.
D.
.
19
19
17
π
x
Câu 15. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π3
A. 1.
B. e .
C.
e .
D.
e .
2
2
2
ln x p 2
1
Câu 16. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3
3
9
Câu 17. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
6
24
12
!
!
!
4x
1
2
2016
Câu 18. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T =
.
D. T = 1008.
2017
Câu 19. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).
C. D = R.
D. D = R \ {0}.
Câu 20. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 21. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.
Câu 22. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 12.
D. ln 10.
Câu 23. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B. y0 = .
x
x
Câu 24. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.
C. y0 =
C. 5.
1
.
x ln 10
D.
1
.
10 ln x
D. 4.
Câu 25. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
x−3 x−2 x−1
x
Câu 26. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).
Trang 2/10 Mã đề 1
Câu 27. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 1.
D. 2.
2
2
2
1 + 2 + ··· + n
Câu 28. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. 0.
D. .
3
3
Câu 29.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 30. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 10a3 .
D. 20a3 .
A. 40a3 .
B.
3
Câu 31. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vơ số.
C. 1.
D. 2.
Câu 32. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
√
Câu 33. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 4.
D. 36.
Câu 34. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
D. {3; 4}.
C. {5; 3}.
Câu 35. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.
2n + 1
Câu 36. Tính giới hạn lim
3n + 2
1
2
A. .
B. .
2
3
C. Cả hai câu trên sai.
D. Cả hai câu trên đúng.
C. 0.
D.
3
.
2
x = 1 + 3t
Câu 37. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x = 1 + 7t
x = −1 + 2t
x = −1 + 2t
x = 1 + 3t
C.
.
D.
A.
y = 1 + 4t .
y=1+t
y = −10 + 11t .
y = −10 + 11t . B.
z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
Trang 3/10 Mã đề 1
2n − 3
Câu 38. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 39. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 7 mặt.
D. 6 mặt.
x−2
Câu 40. Tính lim
x→+∞ x + 3
2
C. 2.
D. −3.
A. 1.
B. − .
3
Câu 41. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
8
5
7
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
5
Câu 42. Tính lim
n+3
A. 1.
B. 0.
C. 3.
Câu 43. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+1
c+2
c+3
4x + 1
bằng?
Câu 44. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −1.
C. −4.
D. 2.
D.
3b + 2ac
.
c+2
D. 2.
Câu 45. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 1.
C. 2.
D. 3.
Câu 46. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
a3 3
2a3 3
5a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 47. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 48. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C. 1.
D.
.
2
2
Câu 49. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
6
15
18
x=t
Câu 50. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Trang 4/10 Mã đề 1
π
Câu 51. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
C. T = 2 3.
D. T = 4.
A. T = 2.
B. T = 3 3 + 1.
Câu 52. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 53.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 2.
C. 1.
D. 2.
Câu 54. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
! 3
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 55. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
.
B.
.
A.
n
n
2−n
bằng
n+1
B. −1.
C.
1
.
n
1
D. √ .
n
Câu 56. Giá trị của giới hạn lim
A. 1.
C. 0.
D. 2.
Câu 57. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
D. f (x) liên tục trên K.
Câu 58. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.
C. 8.
D. 10.
Câu 59. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 60. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vơ số.
Câu 61. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.
C. 2.
D. 1.
1
Câu 62. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 63. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 5/10 Mã đề 1
tan x + m
Câu 64. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 65. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 66. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.
C. 12.
Câu 67. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 72.
D. 20.
D. 7, 2.
Câu 68. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 69. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±1.
D. m = ± 2.
A. m = ±3.
B. m = ± 3.
Câu 70. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (−1; 0).
D. (0; 1).
Câu 71. Tính lim
A. 3.
n−1
n2 + 2
B. 0.
C. 1.
D. 2.
Câu 72. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
2
2
1 1
1
x−2 y−2 z−3
x y−2 z−3
=
.
D.
=
=
.
C. =
2
3
−1
2
3
4
√
Câu 73. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Câu 74. [3] Biết rằng giá trị lớn nhất của hàm số y =
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 22.
Z 2
ln(x + 1)
Câu 75. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 0.
C. 1.
D. S = 24.
D. −3.
Câu 76. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 2.
D. 4.
π π
Câu 77. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 1.
D. 7.
Câu 78. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 13.
D. 2020.
Trang 6/10 Mã đề 1
Câu 79. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.
C. 0.
D. 7.
Câu 80. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
x+3
Câu 81. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 2.
D. 3.
cos n + sin n
Câu 82. Tính lim
n2 + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 83. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
Câu 84. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 4 − 2 ln 2.
C. 1.
x − 12x + 35
25 − 5x
D. e.
2
Câu 85. Tính lim
x→5
2
A. − .
5
B. +∞.
Câu 86. Hàm số nào sau đây khơng có cực trị
1
B. y = x4 − 2x + 1.
A. y = x + .
x
C.
2
.
5
C. y = x3 − 3x.
D. −∞.
D. y =
x−2
.
2x + 1
Câu 87. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1637
1728
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 88. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 89. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
D. Khối 12 mặt đều.
C. Khối tứ diện đều.
Câu 90. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. − .
C. −2.
2
2
D. 2.
Câu 91. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD
√
3
a
a 3
a 3
.
B.
.
C.
.
D. a3 .
A.
3
3
9
√
Câu 92. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 63.
D. 64.
Câu 93. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(−4; 8).
Trang 7/10 Mã đề 1
Câu 94. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).
1
Câu 95. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 96. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
x
Câu 97.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. 1.
C. .
D. .
2
2
2
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 98. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 2 3.
C. 2 2.
D. 6.
Câu 99. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 10 .(3)40
C 20 .(3)30
C 20 .(3)20
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 100. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (I) và (II).
C. (II) và (III).
!4x
!2−x
3
2
≤
là
Câu 101. Tập các số x thỏa mãn
3
2
"
!
#
"
!
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
5
5
3
Câu 102. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 3.
D. Cả ba mệnh đề.
#
2
D. −∞; .
3
D. x = 2.
Câu 103. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.
D. 8π.
2
4
3
Câu 104. Cho z là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
√
−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
Trang 8/10 Mã đề 1
Câu 105. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
.
C. 8 3.
.
A. 6 3.
B.
D.
3
3
Câu 106. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 7 3.
C. 16.
D. 8 3.
!
5 − 12x
Câu 107. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 108. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 3.
e
Câu 109. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. 8.
D. 2e.
D. 12.
3
2
x
Câu 110. [2]
√ Tìm m để giá trị nhỏ nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2
A. m = ± 2.
B. m = ± 3.
C. m = ±1.
D. m = ±3.
Câu 111. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.
D. Không tồn tại.
1
Câu 112. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = R.
Câu 113. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. e2016 .
D. 1.
Câu 114. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
C. 8.
D. 10.
Câu 115. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
√
a
2
a
3
a3 3
C.
A.
.
B. a3 3.
.
D.
.
2
2
4
d = 120◦ .
Câu 117. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C. 2a.
D.
.
2
Câu 118. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Trang 9/10 Mã đề 1
x+1
Câu 119. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
2
6
C. 1.
D.
1
.
3
1
Câu 120. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
Câu 121. Phát biểu nào sau đây là sai?
1
B. lim qn = 0 (|q| > 1).
A. lim k = 0.
n
1
C. lim = 0.
D. lim un = c (un = c là hằng số).
n
Câu 122. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
log 2x
Câu 123. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
x ln 10
2x ln 10
2x ln 10
Câu 124. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
3
x −1
Câu 125. Tính lim
x→1 x − 1
A. −∞.
B. 0.
C. 3.
D. +∞.
Câu 126. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng
√
√
√
a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
2
6
3
Câu 127. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 10 mặt.
D. 8 mặt.
Câu 128. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4
Câu 129. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 20 mặt đều.
Câu 130. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
3.
C
4.
5.
C
6.
7.
C
8. A
9. A
B
D
C
10. A
11.
B
12.
13.
B
14.
D
15.
D
C
16. A
17.
C
18.
D
19.
C
20.
D
21.
22.
B
23.
B
24.
C
D
25.
B
26.
27.
B
28.
D
30.
D
29.
C
31.
D
33.
32. A
C
35.
34. A
D
37. A
39.
B
38.
B
B
44. A
B
C
47. A
50.
46.
B
48.
B
51.
D
D
53.
B
54.
56.
B
42.
45.
52.
36.
40. A
41. A
43.
B
D
55.
C
B
57.
B
58.
C
59.
60.
C
61.
D
B
C
62.
D
63.
D
64.
D
65.
D
66.
D
67.
69.
68. A
1
B
D
70.
72.
71.
C
B
75.
76. A
77.
82.
79.
B
80.
C
73.
74. A
78.
B
D
C
B
81.
C
83.
B
D
B
84.
D
85.
C
86.
D
87.
C
88.
B
C
90.
92. A
89.
B
91.
B
93. A
D
94.
C
96.
98.
B
100.
B
95.
B
97.
B
99. A
101.
C
102. A
104.
C
105. A
106.
C
108.
C
C
107.
C
109.
D
110.
111.
D
112. A
113. A
114. A
115.
D
116. A
117.
D
118.
119.
B
120.
121.
B
122.
123.
B
124.
125.
127.
129.
C
D
B
C
B
126.
C
128. A
B
D
130.
2
B