TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+3
c+2
c+1
c+2
Câu 2. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A.
.
B. y0 =
.
C. y0 = .
D. y0 =
.
10 ln x
x
x
x ln 10
Câu 3. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 20 mặt đều.
√
x2 + 3x + 5
Câu 4. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. 0.
D. .
4
4
2
x
Câu 5. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = 1.
D. M = e, m = .
A. M = e, m = 0.
B. M = , m = 0.
e
e
Câu 6. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của khối
chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng
√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp
√S .ABCD là
√
a3 2
a 2
a3 3
A.
.
B.
.
C.
.
D. a3 3.
4
12
6
x
Câu 8. [12211d] Số nghiệm của phương trình 12.3 + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 9. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 10. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 11. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
a3 3
5a3 3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 12. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
Trang 1/10 Mã đề 1
2
2
C. T = 4 + .
D. T = e + .
e
e
Câu 13. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
A. T = e + 1.
B. T = e + 3.
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (I) và (III).
C. (II) và (III).
D. Cả ba mệnh đề.
Câu 14. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
Câu 15. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
Câu 16. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
C. 8.
D. 27.
A. 9.
B. 3 3.
2
2n − 1
Câu 17. Tính lim 6
3n + n4
2
A. 0.
B. .
C. 2.
D. 1.
3
Câu 18. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
C. .
D. 5.
A. 7.
B.
2
2
[ = 60◦ , S O
Câu 19. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng
√
a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
√
√
Câu 20.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6√− x
√
A. 3 2.
B. 3.
C. 2 3.
D. 2 + 3.
Câu 21. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 22. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 23. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 21.
D. 22.
Câu 24. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. 1.
Trang 2/10 Mã đề 1
Câu 25. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 0.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
Câu 27. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
Câu 26. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
x→+∞
Câu 28. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.
x→+∞
C. 12 cạnh.
D. 11 cạnh.
Câu 29. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 30. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.
C. 144.
D. 24.
Câu 31. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 27.
C. 12.
D. 18.
A.
2
Câu 32. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 2, 4, 8.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 6, 12, 24.
!
3n + 2
2
Câu 33. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 3.
D. 2.
x
y
Câu 34. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 35. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
A.
.
B. 68.
C. 5.
D. 34.
17
Câu 36. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 37. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 1.
C. 2.
D. 0.
Trang 3/10 Mã đề 1
Câu 38. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 39. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. .
D. 9.
2
2
√3
4
Câu 40. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
Câu 41. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√
√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD
3
a
a 3
a 3
.
B.
.
C.
.
D. a3 .
A.
3
3
9
Câu 42. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 15 tháng.
D. 16 tháng.
Câu 43. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 44. Tính lim
x→+∞
A. 2.
x−2
x+3
B. −3.
C. 1.
2
D. − .
3
√
Câu 45. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
3
√
a 3
a3
a
3
.
B.
.
C. a3 3.
D.
.
A.
12
4
3
Câu 46. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 4.
D. 11.
q
2
Câu 47. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 48. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
Câu 49. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
4x + 1
Câu 50. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. 30.
D. 8.
C. −1.
D. 2.
Trang 4/10 Mã đề 1
Câu 51. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
.
e
Câu 52. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
A. 2e.
B. 3.
C. 2e + 1.
D.
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Khơng có câu nào C. Câu (II) sai.
D. Câu (III) sai.
sai.
Câu 53. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 4.
Câu 54. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. 3.
D. 1.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 55. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 2.
D. 3.
x+2
đồng biến trên khoảng
Câu 56. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 57. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.
C. D = (0; +∞).
D. D = R \ {1}.
√
Câu 58. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
x = 1 + 3t
Câu 59. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
7t
x
=
−1
+
2t
x
=
1
+
3t
x = −1 + 2t
A.
.
B.
D.
y=1+t
y = −10 + 11t . C.
y = 1 + 4t .
y = −10 + 11t .
z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 60. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Trang 5/10 Mã đề 1
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
2n + 1
Câu 62. Tính giới hạn lim
3n + 2
2
3
1
A. 0.
B. .
C. .
D. .
3
2
2
Câu 63. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.
C. 30.
D. 20.
Câu 61. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
a3 3
a3 6
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
24
48
48
16
Câu 65. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.
C. 6.
D. 10.
π π
3
Câu 66. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.
√
√
4n2 + 1 − n + 2
Câu 67. Tính lim
bằng
2n − 3
3
A. 2.
B. +∞.
C. .
D. 1.
2
Câu 68. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.
C. 12.
D. 10.
Câu 69. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. − .
C. −2.
2
Câu 70. Biểu thức nào sau đây √
khơng có nghĩa
√
−3
−1
A. (−1) .
B.
−1.
C. (− 2)0 .
D.
1
.
2
D. 0−1 .
Câu 71. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Có hai.
D. Khơng có.
Câu 72.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 73. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. −2.
x−3
Câu 74. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.
C. −∞.
D. 4.
D. 1.
Câu 75. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Trang 6/10 Mã đề 1
√
√
Câu 76. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
B. 0 < m ≤ .
C. m ≥ 0.
D. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4
4
Câu 77. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
2
2
Câu 78. Phát biểu nào sau đây là sai?
1
= 0.
n
1
D. lim k = 0.
n
A. lim qn = 0 (|q| > 1).
B. lim
C. lim un = c (un = c là hằng số).
Câu 79. Tính lim
A. +∞.
cos n + sin n
n2 + 1
B. 0.
Câu 80. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.
C. 1.
D. −∞.
C. y0 = 1 − ln x.
D. y0 = x + ln x.
Câu 81. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
4
8
Câu 82. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 83. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 84. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.
D. 12.
C. 8.
Câu 85. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.
B. y = x3 − 3x.
C. y =
x−2
.
2x + 1
1
D. y = x + .
x
2
Câu 86. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C. 2 .
3
e
2e
e
D.
1
√ .
2 e
Câu 87. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
Câu 88. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
1 − 2n
Câu 89. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 90. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
√
Câu 91. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vô số.
Trang 7/10 Mã đề 1
Câu 92. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 93. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. −7, 2.
D. 0, 8.
Câu 94. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
D. aα+β = aα .aβ .
A. aα bα = (ab)α .
B. aαβ = (aα )β .
C. β = a β .
a
Câu 95. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. .
C. 3.
D. .
2
2
3
2
Câu 96. Hàm số y = x − 3x + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 3.
D. 1.
Câu 97. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 2020.
D. log2 13.
log2 240 log2 15
−
+ log2 1 bằng
Câu 98. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 3.
D. 1.
2n − 3
Câu 99. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 100. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
C. 3.
Câu 101. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m ≥ 0.
D. 4.
D. m > −1.
Câu 102. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 103. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
1
ln x p 2
Câu 104. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
9
3
Câu 105. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 3.
C. a 2.
D.
.
3
2
2x + 1
Câu 106. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. 2.
D. −1.
2
Câu 107. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 2.
Trang 8/10 Mã đề 1
Câu 108. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≥ .
D. m ≤ .
4
4
4
4
0 0 0 0
Câu 109. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
15
6
9
3
2
Câu 110. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 111. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.
C. Chỉ có (II) đúng.
D. Cả hai câu trên sai.
12 + 22 + · · · + n2
n3
2
1
A. +∞.
B. .
C. 0.
D. .
3
3
Câu 113. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
B. a 3.
C.
.
D. 2a 6.
2
Câu 114. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
11a2
a2 2
a2 5
a 7
.
B.
.
C.
.
D.
.
A.
8
32
4
16
Câu 115. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 112. [3-1133d] Tính lim
2
Câu 116. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
2
Câu 117. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. 6.
C. −6.
D. −5.
!4x
!2−x
2
3
Câu 118. Tập các số x thỏa mãn
≤
là
3 #
2
"
!
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5
Trang 9/10 Mã đề 1
Câu 119. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
4
2
Câu 120. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
3
a3 3
a
3
a3
.
B.
.
C. a3 .
D.
.
A.
3
6
2
Câu 121. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Tứ diện đều.
D. Bát diện đều.
Câu 122. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.
D. m , 0.
1
Câu 123. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
!
1
1
1
Câu 124. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 1.
C. .
D. 0.
2
Câu 125. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
1
1
A.
.
B.
.
C. √ .
D. .
n
n
n
n
1
Câu 126. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
√
Câu 127. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
Câu 128. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
C. 10.
D. 4.
Câu 129. [2] Tìm m để giá trị nhỏ nhất
√ của hàm số y = 2x + (m
√ + 1)2 trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
tan x + m
nghịch biến trên khoảng
Câu 130. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. (−∞; −1) ∪ (1; +∞).
3
2
x
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
D
3.
D
4. A
5. A
6.
7. A
8.
C
10.
C
C
9.
11. A
12.
13. A
14. A
15.
16.
B
17. A
C
20. A
21.
C
22.
23.
D
25.
29. A
30.
31.
D
34. A
35. A
36.
D
39.
38.
C
D
C
B
D
42.
43.
B
44.
45.
D
46. A
47.
D
48. A
C
50. A
C
B
52.
53.
C
54. A
55.
C
56.
B
58.
D
B
C
B
60. A
61. A
D
65. A
67.
C
D
B
63.
D
40.
41.
49.
C
32.
33. A
37.
C
26.
C
28. A
59.
B
24. A
27. A
57.
B
18.
19.
51.
B
62.
B
64.
B
66. A
D
68.
1
B
69.
C
70.
71.
C
72.
73.
C
74.
75.
C
76.
77. A
79.
D
C
B
D
78. A
80. A
B
81.
82.
D
83.
C
84.
85.
C
86.
87.
C
88.
D
B
C
D
89.
B
90.
91.
B
92.
C
94.
C
C
93.
95.
D
96. A
97.
D
98. A
B
D
100.
99. A
101.
D
102.
C
103.
D
104.
C
105.
D
106.
C
107.
108.
B
110. A
111. A
D
112.
113. A
114. A
115.
116.
D
B
117.
118. A
119.
120.
D
121. A
122.
D
123.
124.
B
125. A
126.
B
127.
129.
128. A
130.
D
C
2
D
B
D
C
D