Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (377)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.19 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Tập! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. −∞; .
C. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2

Câu 2. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).


D. Hàm số đồng biến trên khoảng (0; 2).
Z 1
6
2
3
Câu 3. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 2.

C. 6.

D. 4.

Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.

.
D.
.
12
6
4
12
Câu 5. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.

C. y0 = x + ln x.

Câu 6. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 0.

B. +∞.

D. y0 = 1 − ln x.
un
bằng
vn

C. 1.

D. −∞.

Câu 7. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số cạnh của khối chóp bằng 2n.

C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.

Câu 8. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng √


3a 38
3a
3a 58
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
2n − 3
Câu 9. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. −∞.

C. 0.
D. +∞.
Câu 10. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 11. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.
C. 8 năm.
D. 10 năm.
Trang 1/11 Mã đề 1



! x3 −3mx2 +m
1
Câu 12. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m , 0.
D. m ∈ (0; +∞).
d = 120◦ .
Câu 13. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 3a.
A. 2a.
B. 4a.
C.
2
Câu 14. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.


C. 1.

D. 3.

Câu 15. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

Câu 16. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 17. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối lập phương.
Z 3
a

a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 18. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 28.
D. P = 16.
Câu 19. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 20. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.

.
24
12
6
Câu 21. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Ba mặt.
D. Bốn mặt.
Câu 22. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 23. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 24.
D. 15, 36.
Trang 2/11 Mã đề 1


Câu 24. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {5; 3}.


D. {3; 4}.

Câu 25. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 3.
D. T = 4 + .
A. T = e + 1.
B. T = e + .
e
e
x+2
Câu 26. Tính lim
bằng?
x→2
x
A. 0.
B. 3.
C. 1.
D. 2.
Câu 27. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 28. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?

A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
Câu 29. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 2.
tan x + m
nghịch biến trên khoảng
Câu 30. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 31. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

3
3
a 6
a3 3
a3 3

2a 6
.
B.
.
C.
.
D.
.
A.
9
12
2
4
Câu 32. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. 2.
C. .
D.
.
2
2
Câu 33. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.
D. m = −3.
Câu 34. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 35. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vơ số.


Câu 36.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6√− x
A. 3 2.
B. 2 + 3.
C. 2 3.
D. 3.
Trang 3/11 Mã đề 1


Câu 37. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.

C. P = −10.
D. P = −21.
Câu 38. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B.
.
C. y0 = .
D. y0 =
.
x
10 ln x
x
x ln 10
Câu 39. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
1 − xy
Câu 40. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.




18 11 − 29
9 11 + 19
2 11 − 3
9 11 − 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
21
9
3
9



x = 1 + 3t




Câu 41. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t
x
=
1
+
3t
x
=
−1
+
2t

x = 1 + 7t
















A. 
C. 
.
y = −10 + 11t . B. 
y = 1 + 4t .
y = −10 + 11t . D. 
y=1+t

















z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
1
Câu 42. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.

C. 2.

D. −1.

Câu 43. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối bát diện đều. D. Khối tứ diện đều.




x=t




Câu 44. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2

C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
Câu 45. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4 − 2e
4e + 2
4e + 2
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 2
a 3

a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
16
48
24
48
d = 60◦ . Đường chéo
Câu 47. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
A. a 6.
B.
.
C.

.
D.
.
3
3
3
Trang 4/11 Mã đề 1


Câu 48. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 24 m.
D. 8 m.
2
2
2
1 + 2 + ··· + n
Câu 49. [3-1133d] Tính lim
n3
1
2
D. .
A. 0.
B. +∞.
C. .
3
3
Câu 50. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng

A. 7.
B. 3.
C. 2.
D. 1.
Câu 51. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 3.
D. V = 4.
Câu 52. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. √ .
n
n

sin n
1
.
D. .
n
n

Câu 53. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.

C. Vô số.
D. 64.
C.

Câu 54. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng


√M + m
C. 8 2.
D. 8 3.
A. 16.
B. 7 3.
Câu 55. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

0 0 0 0
0
Câu 56.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3

.
B.
.
C.
.
D.
.
A.
2
3
2
7
Câu 57. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn !
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn

Câu 58. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên n lần.
Câu 59. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 60. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. 12.

D. 8.
Trang 5/11 Mã đề 1


Z
Câu 61. Cho
A. 3.

1

2

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

x2
B. −3.
C. 1.

D. 0.

Câu 62. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
C. 68.
D. 34.
A.
.
B. 5.
17
Câu 63. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 9.

C. 7.

D. 0.

Câu 64. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥

(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 6
a3 5
a3 15
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
x+2
Câu 65. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
[ = 60◦ , S O
Câu 66. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S BC) bằng


a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 67. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 68. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 69. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
C. 3.
D. 1.
A. 2.

B. 5.
 π π
3
Câu 70. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. −1.
D. 1.
!
x+1
Câu 71. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A.
.
B.
.
C. 2017.
D.
.
2017
2018
2018
Câu 72. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.

C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
2n2 − 1
Câu 73. Tính lim 6
3n + n4
2
A. .
B. 1.
C. 2.
3
Câu 74. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.

D. 0.
D. 1 nghiệm.
Trang 6/11 Mã đề 1


Câu 75. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).

D. (2; 2).

!
4x
1

2
2016
Câu 76. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2017.
A. T = 2016.
B. T = 1008.
C. T =
2017
Câu 77. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
!

!

hàm tương ứng của hàm số f (x), g(x).

(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.
2

Câu 78. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.
Câu 79. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

D. 3 − log2 3.

C. 12 cạnh.

D. 11 cạnh.
8
Câu 80. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 82.
D. 96.
Câu 81. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A

đến đường√thẳng BD0 bằng



c a2 + b2
a b2 + c2
b a2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 82. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1079
1637
23
.
B.
.
C.

.
D.
.
A.
68
4913
4913
4913
Câu 83. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 84. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

C. 8.

D. 5.

π
Câu 85. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.

B. T = 3 3 + 1.
C. T = 4.
D. T = 2.
Câu 86. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
2n + 1
Câu 87. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. .
C. 0.
D. .
3
2
2
Câu 88. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.
D. 10 mặt.
Trang 7/11 Mã đề 1



Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
A. a3 3.
B.
.
C.
.
D.
.
4
2
2
Câu 90. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 91. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.


C. 5.

D. 2.

Câu 92. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
9
1
B. .
C.
.
D.
.
A. .
5
5
10
10
Câu 93. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.
4x + 1
bằng?
Câu 94. [1] Tính lim
x→−∞ x + 1
A. −1.
B. 2.

x2 − 3x + 3
Câu 95. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 3.

C. 12.

D. 10.

C. 4.

D. −4.

C. x = 1.

D. x = 0.
!
3n + 2
2
Câu 96. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 5.
D. 3.
Câu 97. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng

3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+1
c+3
c+2

D.

3b + 3ac
.
c+2

Câu 98. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
! 3
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .

3
3
1 3
x − 2x2 + 3x − 1.
3
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).

Câu 99. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; +∞).

x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. (2; +∞).
D. [2; +∞).

Câu 100. [4-1213d] Cho hai hàm số y =

Câu 101. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ . Tính
√ thể tích của khối chóp 3S .ABC theo a


3
a
a3 5
a3 15
a 15
A.
.
B.
.
C.
.
D.
.
25
3
25
5
Trang 8/11 Mã đề 1


Câu 102. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 8.


D. 4.

Câu 103. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
.
B. un =
.
A. un =
2
(n + 1)
5n + n2

n2 − 3n
C. un =
.
n2

n2 − 2
D. un =
.
5n − 3n2

Câu 104. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = −5.

x2 + 3x + 5
Câu 105. Tính giới hạn lim

x→−∞
4x − 1
1
A. .
B. 0.
C. 1.
4
2x + 1
Câu 106. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 2.
C. .
2
Câu 107.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
12
2
4


D. x = 0.

1
D. − .
4

D. 1.

3
D.
.
4

Câu 108. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 109. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 27.

D. 3.

Câu 110. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.

B. y = x3 − 3x.


1
C. y = x + .
x

D. y =

x−2
.
2x + 1

Câu 111. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.

3
(1, 01)3 − 1
Câu 112. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −3.
D. −6.
x−3
Câu 113. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 114. Trong các khẳng định sau, khẳng định nào sai?

A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Trang 9/11 Mã đề 1


Câu 115. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
A. 6 3.
B.
.
C.
.
D. 8 3.
3
3
Câu 116. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 117. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
.
D. f 0 (0) = ln 10.
ln 10
Câu 118. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng



a 2
a 2

A.
.
B. a 3.
.
D. a 2.
C.
3
2
3
2
Câu 119. Giá

√ trị cực đại của hàm số√y = x − 3x − 3x + 2 √
B. 3 + 4 2.
C. 3 − 4 2.
D. −3 − 4 2.
A. −3 + 4 2.

Câu 120. Xác định phần ảo của √
số phức z = ( 2 + 3i)2

A. −7.
B. 6 2.
C. −6 2.
D. 7.
A. f 0 (0) = 1.

B. f 0 (0) = 10.

C. f 0 (0) =


Câu 121.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
α
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
x dx =
α+1
Z
Z
1
C.
0dx = C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Câu 122. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
Câu 123. [1] Tập xác định của hàm số y = 2
A. D = R.
B. D = (0; +∞).

x−1

C. 24.


D. 144.

C. D = R \ {0}.

D. D = R \ {1}.



Câu 124. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 13.

D. 9.

Câu 125. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
2

Câu 126. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 3 .

B. √ .
C. 3 .
2e
e
2 e

D.

1
.
e2

Câu 127. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
3
a
a
a3 3
3
A. a .
B.
.
C.
.

D.
.
3
9
3
Câu 128. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
Trang 10/11 Mã đề 1



A. 2a 2.


B. a 2.


a 2
C.
.
4


a 2
D.
.
2



Câu 129. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
12
4
3
log7 16
Câu 130. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. −2.
C. 2.
D. −4.
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 11/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

3.

D

2.

D

4.

D

5.

B

6. A

7.


B

8.

9.
11.

C
B

C

10.

B

12.

B

14.

D

15. A

16.

D


17. A

18.

C

13.

19.

C

20.

21.

C

22.

23.

D

27.

C
B


24. A
D

26.

C

25.

B

D

28. A

29.

B

30.

B

31.

B

32.

B


33. A
35.

34.
B

C

36. A
D

37.

D

38.

39.

C

40.

41.

C

42.


C
B

43.

D

44. A

45.

D

46.

B

48.

B

47. A
49.

D

50.

51.


D

52. A

53.

54. A

B

55. A
57.

C

59.

D

56.

B

58.

B

60.

61.


B

62. A

63.

B

64. A

65.

C

66.

C

67. A

68.
1

C

B
C



69. A
71.

B
D

73.

70.

D

72.

D

75.

C

76.

77.

C

78. A

79. A


80.

81.

C

82.

83.

C

84. A

85.

C

86.

87. A
C

90.

91. A

92.

93. A


94.
C

95.

96.
D

97.
B

101. A
103.

B
B
D
C

88. A

89.

99.

C

74.


B
D
C
B

98.

D

100.

D

102.
B

104. A

105.

D

106.

107.

D

108. A


109.

D

110.

111.

D

112.

113.

C

C

B
D
C

114. A
116.

115. A
117.

D


D

118.

119. A

120.

121. A

122.

123. A

124. A

C
B
D

125.

B

126.

D

127.


B

128.

D

130.

D

129.

D

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×