Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (441)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.09 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.

C. 2.

Câu 2. Hàm số nào sau đây khơng có cực trị
1
A. y = x4 − 2x + 1.
B. y = x + .
x

D. 24.

x−2
.
D. y = x3 − 3x.
2x + 1
 π
Câu 3. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2



3 π6
2 π4
1 π3
B.
e .
C.
e .
D. 1.
A. e .
2
2
2
Câu 4. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
C. y =

Câu 5. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.

C. 20.

D. 30.

Câu 6. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng





a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
3
2
6
Câu 7. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 1; m = 1.
Câu 8. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. 1.
−2x2


Câu 9. [2-c] Giá trị lớn nhất của hàm số y = xe
1
2
B. 2 .
A. 3 .
e
e

trên đoạn [1; 2] là
1
C. 3 .
2e

D. −2 + 2 ln 2.
D.

1
√ .
2 e

[ = 60◦ , S O
Câu 10. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng

2a 57
a 57
a 57
A.

.
B.
.
C.
.
D. a 57.
17
19
19
Câu 11. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 3}.
x−2
Câu 12. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
C. 2.
D. 1.
3
Câu 13. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 1.
C. 2.
D. 10.

Câu 14. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối lập phương.
!
5 − 12x
Câu 15. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. Vơ nghiệm.
C. 1.
D. 3.
Trang 1/10 Mã đề 1


Câu 16. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Khơng thay đổi.
Câu 17. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
.
B. a 3.

C. a 2.
D.
.
A.
3
2
3

Câu 18. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .
D. e.
1
Câu 19. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.

Câu 20. [3-12217d] Cho hàm số y = ln

A. xy0 = ey + 1.

Câu 21. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.

Câu 22. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. 4.

D. −4.

Câu 23. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
[ = 60◦ , S A ⊥ (ABCD).
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
A. a 3.
B.
.
C.
.
D.
.
12
6
4
Câu 25. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.

D. Hai mặt.

Câu 26. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên

√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
36
24
Câu 27. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).

Trang 2/10 Mã đề 1


Câu 28. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
2
1
.
B. .
C.
.
D. .
A.
10
5
10
5
Câu 29. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 30. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.

C. 12.


D. 8.

Câu 31. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
B. 2a 2.
C.
.
D.
.
A. a 2.
4
2
Câu 32. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 27.
C. 12.
D. 10.
x
Câu 33.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3

1
.
B. .
C. .
D. 1.
A.
2
2
2
1
Câu 34. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.

Câu 35. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 27 m.
D. 25 m.
Câu 36. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.

D. 3, 5 triệu đồng.
!
3n + 2
2
Câu 37. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 3.
D. 5.



x = 1 + 3t




Câu 38. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương



 trình là









x = 1 + 7t
x = 1 + 3t
x = −1 + 2t
x = −1 + 2t

















.
A. 
B. 
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y=1+t
y = 1 + 4t .
















z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
Trang 3/10 Mã đề 1



Câu 39. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
Câu 40. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = [2; 1].
2

D. D = (−2; 1).

Câu 41. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là

A. (I) và (II).

B. Cả ba mệnh đề.

C. (II) và (III).

D. (I) và (III).

Câu 42. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
4
4
x2 − 9
Câu 43. Tính lim
x→3 x − 3
A. +∞.
B. 6.

C. 3.

D. −3.

Câu 44. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.

B. 12.

C. 20.

D. 30.

C. 0.

D. −∞.

C. (−∞; 1].

D. [3; +∞).

Câu 45. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. 3.
!2x−1

3
3

5
5

B. (+∞; −∞).

Câu 46. Tập các số x thỏa mãn
A. [1; +∞).

!2−x


3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a 2
a
2a
A. .
B.
.
C. .
D.
.
4
3
3
3
Câu 47. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =


Câu 48. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
A.
.
B. 8 3.
C.
.
D. 6 3.
3
3
Câu 49. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 1.
C. .
D. 3.
2
2
Trang 4/10 Mã đề 1



Câu 50.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].

C. m ∈ [0; 4].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [−1; 0].

Câu 51. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞

x→+∞ g(x)
b
Câu 52. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 91cm3 .
D. 84cm3 .
Câu 53. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e2 .
D. 2e4 .
Câu 54. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 55. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.

C. 10a3 .
D. 20a3 .
A. 40a3 .
B.
3

Câu 57. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. (1; 2).
D. [3; 4).
2
2
9x
Câu 58. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 1.
C. .
D. 2.
2
Câu 59. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương

ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
9
15
18
3
Câu 60. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. −1.
B. 6.
C. 1.
D. 2.
Câu 61. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B.
u
=
.
n
5n − 3n2

n2
2−n
Câu 62. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.

C. un =

C. 1.

1 − 2n
.
5n + n2

D. un =

n2 + n + 1
.
(n + 1)2

D. 2.
Trang 5/10 Mã đề 1


Câu 63. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.

C. V = 4.
D. V = 6.
Câu 64. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 5.
D. 0, 2.
x+2
đồng biến trên khoảng
Câu 65. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. Vô số.
D. 1.
x−1 y z+1
Câu 66. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.

Câu 67. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
 π π
Câu 68. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 3.
D. 7.
Câu 69. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.

C.
.
D.
.


a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 70. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 22.
D. 24.
Câu 71. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 72. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.

C. y0 = 1 + ln x.

D. y0 = ln x − 1.


Câu 73. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.

C. 20.

D. 12.

Câu 74. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 75. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
9
5
B.
.
C. −
.
D.
.
A. − .
16
100
100

25
Câu 76. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Trang 6/10 Mã đề 1


Câu 77. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 78. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 79. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



3
3
3

a
a
3
a
3
A. a3 3.
B.
.
C.
.
D.
.
4
12
3
Câu 80. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (−1; 0).
D. (0; 1).
Câu 81. Giá trị lớn nhất của hàm số y =
A. 1.
Câu 82. Tính lim
A.

7
.
3


B. −5.

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. −2.
D. 0.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.

Câu 83. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

2
D. - .
3

C. 1.

B. 1.

C. 3.

1

3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

2

Câu 84. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 3.

D. 5.

2

Câu 85. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 135.


D. S = 24.

Câu 86. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 3.
C. 6.
D. 8.
Câu 87. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Câu 88. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {0}.

D. D = R \ {1}.

Câu 89. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
8
7
; 0; 0 .

B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
Câu 90. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
Câu 91. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
e
2e

D. 4 mặt.

D. −

1
.
e2
Trang 7/10 Mã đề 1



Câu 92. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 93. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Bát diện đều.

D. Thập nhị diện đều.

Câu 94. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
a
2a
.
B.
.
C.
.
D. .
A.
9
9
9

9
0 0 0 0
0
Câu 95. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x+2
bằng?
Câu 96. Tính lim
x→2
x
A. 0.

B. 1.
C. 2.
D. 3.
Câu 97. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 98. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .

3

!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 99.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

1 − 2n
Câu 100. [1] Tính lim
bằng?
3n + 1
1
A. .
B. 1.
3
Câu 101. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.

2
C. − .
3

D.

2
.
3

C. 20.

D. 30.

Trang 8/10 Mã đề 1


Câu 102. [12210d] Xét các số thực dương x, y thỏa mãn log3

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y

nhất Pmin của P√ = x + y.



9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
Câu 103. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.

C. 27.
D. 18.
A. 12.
B.
2
log2 240 log2 15
Câu 104. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
Câu 105. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. − ; +∞ .
C. −∞; − .
A. −∞; .
2
2
2

!
1
D.
; +∞ .

2

Câu 106. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.

D. m = 0.

Câu 107. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 + 6.9 = 0 là
A. 2.
B. 3.
C. 0.

D. 1.

x

x

x

Câu 108. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
[ = 60◦ , S O
Câu 109. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ Khoảng cách từ A đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.
.
C. a 57.
.
D.
A.
19
17
19
Câu 110. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

C. 1.

D. 2.

d = 60◦ . Đường chéo

Câu 111. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 112. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .

D. 1200 cm2 .
Câu 113. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3
3
3
4a
2a
2a 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 9/10 Mã đề 1


Câu 114. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng


a
a 3
a
B. a.
C. .
D.
.
A. .
2
3
2
a
1
Câu 115. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 2.
C. 7.
D. 1.
Câu 116. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 117. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy


S
C
=
a
3. √
Thể tích khối chóp S .ABC√là


3
3
a 3
a3 6
2a3 6
a 3
.
B.
.
C.
.
D.
.
A.
4
2
12
9
q
2
Câu 118. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =

√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].

Câu 119. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vô số.
p
ln x
1
Câu 120. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
9

9
3
3
Câu 121.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
2
4


a3 2
C.
.
12


a3 2
D.
.
6

Câu 122. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là

A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
1

Câu 123. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).

D. D = R \ {1}.

Câu 124. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 125. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. 6.
D. .
2

2
Câu 126. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 11 cạnh.

C. 9 cạnh.

Câu 127. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. 0.

D. 12 cạnh.
D. Không tồn tại.
Trang 10/10 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 128. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.

C.
.
D.
.
A.
9
26
13
16
Câu 129. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.
C. 8.
D. 10.

x2 + 3x + 5
Câu 130. Tính giới hạn lim
x→−∞
4x − 1
1
1
C. .
D. 0.
A. 1.
B. − .
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

C

5.

4.
D

8.
B
D
B

15.

C

C

12.


D

14.

D

18.

19.

C

20.

21.

C

22. A

23.

B

24.

25.

B


26.

27.

C

28.

29.

C

30. A

31.

D

32. A

33.

D

34. A
36.

C


37. A
39.

B

16. A
D

17.

35.

D

10.

11.
13.

B

6.

7. A
9.

C

C
D

D
B
C

B

38.
B

41. A

40.

B

42.

B

43.

B

44.

45.

B

46. A


47.

D

49. A
51.

D

D

48.

D

50.

D

52. A

53. A

54.

55.

C


B

56.

C

57. A

58.

D
B

60.

B

61.

C

62.

B

63.

C

64.


B

65.

B

66.

B

67.

B

68. A

69. A
1


70.

C

71. A

72.

C


73.

74. A

D
C

75.

76.

B

77. A

78.

B

79.

D

81.

D

80.


C

82.

D

83.

B

84.

B

85.

B

86.

B

87.

B

89.

B


88. A
91.

B

92. A
D

93.
95.

94.

C

97. A

96.

C

98.

C
C

99.

C


100.

101.

C

102.

103.
105.
107.

D
C

106.

B

108.

B

110.

D

111. A

112. A


113. A

114.

115.

C

116. A

117.

C

118.

119.

C

120.

121.

C

122. A

123.


C

124.

125.

D

104. A

B

109.

B

D

D
B
C
B
C

126. A

127.

C


128.

129.

C

130.

2

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×