Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (641)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.21 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Các khẳng
!0 định nào sau đây là sai?
Z
A.
f (x)dx = f (x).
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.

D.

Câu 2. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

Z
B.
Z



f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

D. Khối bát diện đều.

Câu 3. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vuông góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD√là

a3
a3 3
a3 3
3
A.
.
B. a .
C.
.
D.
.

3
3
9
Câu 4. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



4a3 3
5a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2



x = 1 + 3t





Câu 5. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương



 trình là








x
=
1
+
3t

x
=
1
+
7t
x
=
−1
+
2t
x = −1 + 2t
















B. 
.
C. 

A. 
y = 1 + 4t .
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t .
















z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
Câu 6. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {2}.
Câu 7. [1] Đạo hàm của làm số y = log x là

1
ln 10
.
B. y0 =
.
A. y0 =
x ln 10
x

1
C. y0 = .
x

D. {5; 2}.

D.

1
.
10 ln x

Câu 8. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A = a √
5. Thể tích khối chóp S .ABCD


3
3
3

4a 3
2a 3
2a3
4a
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 9. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. a.
D. .
2
3
2
2n + 1

Câu 10. Tìm giới hạn lim
n+1
A. 2.
B. 3.
C. 0.
D. 1.
Trang 1/10 Mã đề 1


Câu 11. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. 2.
C. .
A.
2
2
Câu 12. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.

D. 1.
D. m = −2.

Câu 13. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.

C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a
3
A. 20a3 .
B.
.
C. 10a3 .
D. 40a3 .
3
!
x+1
Câu 15. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
C.
.
D.
.
A. 2017.
B.
2018

2018
2017
Câu 16. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.

Câu 17. Xác định phần ảo của số √
phức z = ( 2 + 3i)2 √
A. −7.
B. −6 2.
C. 6 2.
D. 7.
Câu 18. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 2.
D. 7.
log(mx)
Câu 19. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
x
Câu 20.

√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
.
B. .
C. .
D. 1.
A.
2
2
2

[ = 60◦ , S O
Câu 21. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng

a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
17

19
19
Câu 22. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 15
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
3
25
25
5
Câu 23. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −6.
D. −3.
Câu 24. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.

C. −1 + sin x cos x.

D. 1 + 2 sin 2x.
Trang 2/10 Mã đề 1


Câu 25. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
C. lim un = c (un = c là hằng số).

1
= 0.
nk
1
D. lim = 0.
n
B. lim

Câu 26. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Câu 27. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
3
3

3
A. .
B.
.
C.
.
4
12
2
log 2x
Câu 28. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
x
2x ln 10
x ln 10
Câu 29. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.


C. Khối bát diện đều.


3
D.
.
4

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

D. Khối lập phương.

Câu 30. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 31. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.

sai.

C. Câu (I) sai.

D. Câu (II) sai.

Câu 32. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
Câu 33. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 34. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 35. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −10.
D. P = −21.
Trang 3/10 Mã đề 1



Câu 36. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Câu 37. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.

C. 8.

D. 12.

Câu 38. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.
D. {4; 3}.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 39. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 7.

C. 2.
D. 1.
Câu 40. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.

C. y0 = 1 − ln x.

D. y0 = x + ln x.

Câu 41. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 42. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình


Câu 43. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.

D. Hai mặt.
x+3
nghịch biến trên khoảng
Câu 44. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 3.
B. 2.
C. 1.
D. Vô số.
[ = 60◦ , S O
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.

D.
.
19
17
19
4x + 1
Câu 46. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
C. 4.
D. −1.
Câu 47.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.

D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 48. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x
2
B. − .
5

C. +∞.

D.

2
.
5
Trang 4/10 Mã đề 1


Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3

3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 50. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.

D. −7.

Câu 51. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
9

1
1
A. .
B.
.
C.
.
D. .
5
10
10
5
Câu 52. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 0.

B. 2 < m ≤ 3.

1

= m − 2 có nghiệm
3|x−2|
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.

Câu 53. [12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

D. 9.


Câu 54. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
x+2
đồng biến trên khoảng
Câu 55. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. 1.
D. Vô số.
!x
1

Câu 56. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. log2 3.
B. − log3 2.
C. − log2 3.
D. 1 − log2 3.

x2 + 3x + 5
Câu 57. Tính giới hạn lim
x→−∞

4x − 1
1
1
A. 1.
B. 0.
C. .
D. − .
4
4
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
4a3 3
a3
2a3 3
a3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
Câu 59. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.

C. Tăng lên n lần.
D. Không thay đổi.
0
Câu 60. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 2.
B. 1.
C. 3.
D.
.
3
2

Câu 61. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 2 − log2 3.
Câu 62. Tính lim

x→2

A. 3.

x+2
bằng?
x
B. 1.

C. 2.

D. 1 − log3 2.

D. 0.
Trang 5/10 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).

B. (−∞; −3].
C. (−∞; −3).
D. [−3; +∞).
Câu 63. [4-1212d] Cho hai hàm số y =

0 0 0 0
0
Câu 64.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
2
2
7
x+1
Câu 65. Tính lim
bằng
x→−∞ 6x − 2

1
1
1
B. 1.
C. .
D. .
A. .
6
2
3
!
1
1
1
Câu 66. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. 2.
D. .
2
2

Câu 67. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.


C. 12.

D. 30.

Câu 68. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).
x→a

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

1
Câu 69. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 70. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng




a 3
a 3
2a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
d = 60◦ . Đường chéo
Câu 71. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6

A.
.
B.
.
C.
.
D. a3 6.
3
3
3
x−3
Câu 72. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 73. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.

C. 12.

D. 20.

Câu 74. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n3 lần.

D. n lần.
Câu 75. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
n

B. lim qn = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).
Trang 6/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 3.

Câu 76. [1-c] Giá trị biểu thức
A. 4.

D. 1.

Câu 77. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.

C. 22016 .
D. 1.
Câu 78. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Z 0
u (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 79. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.

C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

Câu 80. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).

C. A(−4; 8).
D. A(−4; −8)(.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.

Câu 81. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 82. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 83. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (1; +∞).

D. (−∞; −1).

3
2
Câu 84. Giá

√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.


D. −3 + 4 2.

Câu 85. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −7.
D. −2.
27
Câu 86. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.

D. {5; 3}.

Câu 87. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 2.

C. 1.

D. 3.
Trang 7/10 Mã đề 1


Câu 88. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
Câu 89. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. −2.
C. .
D. 2.
2
2
Câu 90. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là

A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
2n + 1
Câu 91. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. .
C. 0.
D. .
2
3
2
0 0 0 0
Câu 92. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
A. √
.
B. √
.
C. √

.
D. 2
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 93. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
loga 2
log2 a
Câu 94. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3

a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
24
6
12
tan x + m
Câu 95. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 96. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. −2 + 2 ln 2.


D. 4 − 2 ln 2.

Câu 97. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.

D. 3.

Câu 98. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

C. 3.

D. 0.

Câu 99. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).
Trang 8/10 Mã đề 1



Câu 100. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 101. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình tam giác.

D. Hình chóp.

Câu 102. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Câu 103. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 104. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 27.
C. 12.
D. 18.

A.
2
Câu 105. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 = x
.
C. y0 = 2 x . ln 2.
D. y0 =
.
2 . ln x
ln 2
ln x p 2
1
Câu 106. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
B. .
C. .
D. .
A. .
3
9
9

3
3
2
Câu 107. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; −1) và (0; +∞).
√3
4
Câu 108. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
mx − 4
Câu 109. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 45.
D. 26.
√3
Câu 110. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1

A. −3.
B. .
C. − .
D. 3.
3
3
Câu 111. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.

Câu 112. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
Câu 113. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. 9.
D. .
2
2
x−3 x−2
x−3
x−2

Câu 114. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Trang 9/10 Mã đề 1


Câu 115. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.
C. 5.
D. 4.
x
9
Câu 116. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 2.
C. 1.
D. −1.
2
Câu 117. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.

Câu 118. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 4.
D. 3.
Câu 119. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

C. D = (0; +∞).

D. D = R \ {1}.

Câu 120. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

Câu 121. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −5.
D. x = −8.
2
2n − 1
Câu 122. Tính lim 6

3n + n4
2
B. 2.
C. 0.
D. 1.
A. .
3
Câu 123. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
Câu 124. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
Câu 125. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − .
A. − .
2e
e
Câu 126. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
C. 12.
5

Câu 127. Tính lim
n+3
A. 2.
B. 1.
C. 0.

D. {5; 3}.
D. −

1
.
e2

D. 30.

D. 3.

Câu 128.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
Câu 129. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
a3

a
3
a
3
A.
.
B. a3 .
C.
.
D.
.
3
2
6
Câu 130. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D


2.
4.

3. A
5.

D

6.

7. A
C

12.

B

18.

19.

C

20.

B

23.


D

25. A
27.

D
B

31. A
33.

D

16.

B
C

29.

D

14. A

17.
21.

B

10. A


13. A
15.

D

8. A

9.
11.

C

C
D

22.

B

24.

B

26.

C

28.


C

30.

C

32.

C

34.

C

D

35.

D

36. A

37.

D

38.

B
B


39.

B

40.

41.

B

42.

43.

B

44. A

45.

B

46.

47.
49.

B


50. A

51.

B

52.

53.

B

54.

55.

B

56.

59.

D

63.

D
C
D
C


58. A
60. A

B

61.

C

48.

C

57.

D

C

62.

C

64. A

B

65. A


66.

C

67. A

68.

C

1


69.

70. A

B

71.

D

72. A

73.

D

74.


75.

B

76.

77.

B

78.

79.

B

80. A

81.

B

82. A

83.

B

84.


85.

D

86.

87.

D

88.

C
B
D

D
C
B

89.

B

90.

C

91.


B

92.

C

95.

B

97.

96. A
C

98.

99. A
C

102.

C
B

109. A
111.

B


C

108.

C
B

112.

C

114.
D

115.

D

116.

C
D

118.

B

119. A


120. A

121.
123.

D

106.
110.

113. A
117.

B

104.

B

105.
107.

B

100. A

101.
103.

D


94.

93. A

D

122.

B

125. A

124.

D

126.

D

127.

C

128.

129.

C


130.

2

C

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×