Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (810)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (158.63 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 0.

C. 1.

D. 2.

Câu 2. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m ≤ 3.
D. m > 3.
Câu 3. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = 6.
Câu 4.√ Thể tích của khối lăng trụ


√ tam giác đều có cạnh bằng
√ 1 là:
3
3
3
A.
.
B.
.
C.
.
4
12
2
Câu 5. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. 2.
C. .
2
2
log3 12
Câu 6. [1] Giá trị của biểu thức 9
bằng
A. 24.
B. 4.
C. 144.
!
1

1
1
Câu 7. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
C. 0.
A. 1.
B. .
2
Câu 8. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Hai mặt.
!x
1
1−x
Câu 9. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. 1 − log2 3.
C. − log3 2.
Câu 10. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (0; −2).


D.

3
.
4

D. −2.
D. 2.

D. 2.
D. Bốn mặt.

D. log2 3.
D. (−1; −7).

Câu 11. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 12. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :

=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
3
4
1 1
1
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.

2
3
−1
2
2
2
Câu 13. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
Trang 1/10 Mã đề 1


B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 14. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 15. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. −2.

D. 2.

Câu 16. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 17. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
.
D.
24
24
12
un
Câu 18. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn

A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 19. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.

D. {5; 3}.
tan x + m
Câu 20. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
Z 1
Câu 21. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 0.

B.

1
.

2

C.

1
.
4

D. 1.

8
Câu 22. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 82.
D. 96.
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
4a 3
a3
a3
A.
.
B.
.

C.
.
D.
.
3
3
6
3

Câu 24. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a3 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6

36
1
Câu 25. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Trang 2/10 Mã đề 1





2 − 1 − 3i lần lượt √l

B. Phần thực là 2 −√1, phần ảo là √
3.
D. Phần thực là 1 − 2, phần ảo là − 3.
 π
Câu 27. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π
2 π4
A.
e .
e .

B. e 3 .
C.
D. 1.
2
2
2
Câu 28. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
1
1
C.
.
D.
.
A. √ .
B. .
n
n
n
n
Câu 26. Phần thực√và phần ảo của số phức
√ z=
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.

2
Câu 29. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.

B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.

Câu 30. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. β = a β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
a
Câu 31.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.

D.
.
4
12
6
2
Câu 32. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Z 1
6
2
3
Câu 33. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.

B. 6.

C. 2.

D. −1.
x+3
Câu 34. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =

nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 1.
D. 2.
2
1−n
Câu 35. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. 0.
C. .
D. .
2
3
2
Câu 36. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Ba mặt.
D. Hai mặt.
π
Câu 37. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 4.
C. T = 2 3.
D. T = 3 3 + 1.
log7 16
Câu 38. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −4.
C. 2.
D. −2.
Câu 39. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Trang 3/10 Mã đề 1


Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5

a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 41. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
1 − 2n
n2 + n + 1
.
B.
u
=
.
C.
u
=
.
D. un =
.

A. un =
n
n
2
2
2
(n + 1)
5n − 3n
n
5n + n2
Z 3
x
a
a
Câu 42. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 28.
D. P = 16.
Câu 43. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 34.
B. 68.
C.
.
D. 5.
17
Z 2
ln(x + 1)
Câu 44. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 1.
D. 0.
Câu 45. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
n−1
Câu 46. Tính lim 2
n +2
A. 3.
B. 1.

C. 0.
D. 2.
Câu 47. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. −e2 .
D. 2e4 .
Câu 48. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều.

D. Bát diện đều.

Câu 49. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.

.
B.
.
C.
.
D.
.
12
24
36
6
Câu 50. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
.
e
Câu 51. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 212 triệu.
D. 220 triệu.
A. 3.

B. 2e + 1.

C. 2e.


D.

Câu 52. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 7 năm.
D. 10 năm.
Trang 4/10 Mã đề 1


Câu 53. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 54. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 55. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

C. y0 = 1 − ln x.

D. y0 = x + ln x.


Câu 56. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 1.
C. 10.
D. 2.
Câu 57. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B. a 3.
C.
.
D.
.
3
2
2
Câu 58. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.

C. 12 m.
D. 24 m.
Câu 59. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12) − 1
3
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 60. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .

C. T = e + 3.
D. T = e + 1.
e
e
x−1 y z+1
Câu 61. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 62. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.
5
Câu 63. Tính lim
n+3
A. 3.
B. 1.

C. D = R \ {1}.

D. D = R \ {0}.


C. 0.
D. 2.
2
ln x
m
Câu 64. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 22.
D. S = 24.
Câu 65. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.
Trang 5/10 Mã đề 1


B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
C.
f (x)dx = f (x).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt

√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3

a 2
a 3
a 3
.
B.
.
C. a3 3.
.
A.
D.
4
2
2
x3 − 1
Câu 67. Tính lim
x→1 x − 1
A. −∞.
B. +∞.
C. 0.
D. 3.
2
x − 5x + 6
Câu 68. Tính giới hạn lim
x→2

x−2
A. −1.
B. 5.
C. 0.
D. 1.
Câu 69. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 3.
D. 6.
3a
Câu 70. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a 2
2a
a
a
B.
.
C.
.
D. .
A. .
4
3

3
3
2−n
Câu 71. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.
C. 1.
D. 2.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 72. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
Câu 73. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (III) sai.

C. Câu (II) sai.


D. Không có câu nào
sai.
Câu 74. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 5%.
C. 0, 8%.
D. 0, 7%.

Câu 75. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A. 2; .
B. (1; 2).
C. [3; 4).
D.
;3 .
2
2
Trang 6/10 Mã đề 1


x+1
Câu 76. Tính lim

bằng
x→−∞ 6x − 2
1
1
B. .
A. .
6
3

C.

1
.
2

D. 1.

!
!
!
4x
1
2
2016
Câu 77. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017

2017
2017
2016
A. T = 2016.
B. T = 2017.
C. T = 1008.
D. T =
.
2017

Câu 78. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
.
D. V = a3 2.
A. V = 2a3 .
B. 2a3 2.
C.
3
d = 300 .
Câu 79. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.3 √

3a3 3
a 3
.
B. V = 3a3 3.

.
D. V = 6a3 .
A. V =
C. V =
2
2
Câu 80. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

Câu 81. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
Câu 82. [1] Tập xác định của hàm số y = 4
A. D = [2; 1].
B. D = R.


x2 +x−2

D. {3; 5}.


C. D = R \ {1; 2}.

D. D = (−2; 1).

Câu 83. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 12.
B. 27.
C. 18.
D.
2
Câu 84. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A.
; +∞ .
B. −∞; − .
C. − ; +∞ .
D. −∞; .

2
2
2
2
Câu 85. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 387 m.
D. 27 m.
Câu 86. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

Câu 87. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 1 nghiệm.
B. Vô nghiệm.

1
1
C. y0 =
.
D. y0 = x
.
ln 2
2 . ln x


4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 3 nghiệm.
D. 2 nghiệm.

Câu 88. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−1; 0).
Câu 89. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H

(ABCD),
S
A
=
a
5. Thể tích khối chóp √
S .ABCD là

3
3
3
2a 3
4a
4a 3
2a3
A.

.
B.
.
C.
.
D.
.
3
3
3
3
Trang 7/10 Mã đề 1


Câu 90. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

D. {4; 3}.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.


Câu 91. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

Câu 92. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 93. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − .
A. − .
e
2e
Câu 94. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 4.

D. −
1
3|x−1|

C. 2.

Câu 95. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

A. −2 + 2 ln 2.
B. e.
C. 1.
2
2
2
1 + 2 + ··· + n
Câu 96. [3-1133d] Tính lim
n3
2
1
A. 0.
B. .
C. .
3
3
2
x − 3x + 3
Câu 97. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 2.
C. x = 3.
Câu 98.
√ Biểu thức nào sau đây khơng
√ có nghĩa
−3
A.
−1.

B. (− 2)0 .

C. 0−1 .

1
.
e2

= 3m − 2 có nghiệm duy

D. 3.
D. 4 − 2 ln 2.

D. +∞.

D. x = 1.
D. (−1)−1 .

Câu 99. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. .
C. 9.
D. 6.
A. .
2
2
Câu 100. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:

A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 101. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 1.

D. 2.

Câu 102. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.
C. y = log π4 x.
D. y = log 14 x.

Câu 103.
Xác
định
phần
ảo
của
số
phức
z
=
(
2 + 3i)2


A. 6 2.
B. −7.
C. 7.


D. −6 2.

Câu 104. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Chỉ có (I) đúng.
Trang 8/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 3.

Câu 105. [1-c] Giá trị biểu thức
A. 4.


D. −8.


Câu 106. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6



x = 1 + 3t





Câu 107. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t

x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 7t
















A. 
B. 
.

y = 1 + 4t .
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y=1+t
















z = 1 − 5t
z = −6 − 5t
z = 6 − 5t
z = 1 + 5t
Câu 108. Hàm số nào sau đây khơng có cực trị
x−2
.
A. y = x4 − 2x + 1.
B. y =
2x + 1


C. y = x3 − 3x.

1
D. y = x + .
x

a
1
Câu 109. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 4.
C. 7.
D. 1.
Câu 110. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.

C. 2.

D. +∞.

Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là



3
3
a 6
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
48
48
24
16
Câu 112. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
!4x
!2−x
2
3

Câu 113. Tập các số x thỏa mãn


3
2
"
!
#
"
!
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .
5
3
3
5
Câu 114. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là



3
a3 3
a
3
a3
A.
.
B. a3 .
C.
.
D.
.
6
2
3
Câu 115. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc
45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
A.
.
B. 20a3 .
C. 10a3 .
D. 40a3 .

3
Trang 9/10 Mã đề 1


Câu 117. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng



a 6
a 6
a 6
B.
A. a 6.
.
C.
.
D.
.
6
2
3
Câu 118. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 27.
D. 12.
log 2x

Câu 119. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
Câu 120. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 9 lần.
Câu 121. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
A. 8.
B. 3 3.
C. 9.
D. 27.

2

2

sin x
Câu 122.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá
√ trị lớn nhất của hàm√số f (x) = 2
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.

Câu 123. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3
2a 3
4a3 3
a3 3
5a 3
.
B.
.
C.
.

D.
.
A.
3
3
3
2
x−3 x−2 x−1
x
Câu 124. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 125. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =

3


2 3
.
A. 3.
B. 2.
C. 1.
D.
3
d = 120◦ .
Câu 126. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 4a.
D. 2a.
2
Câu 127. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.
C. 20.
D. 8.
Câu 128. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30

C 20 .(3)20
C 40 .(3)10
C 10 .(3)40
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 129. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; 6, 5].
D. (4; +∞).
Trang 10/10 Mã đề 1


3
2
x
Câu 130. [2]
√ + 1)2 trên [0; 1] bằng 2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m
B. m = ±1.
C. m = ± 2.
D. m = ±3.
A. m = ± 3.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3. A

B

4. A

5.

D

C

6.

7. A


8.

9. A

10.

B
C

11.

C

12.

B

13.

C

14.

B

15.

C

16.


17.

B

19.

D

18.

C

20.

C

21.

B

22. A

23.

B

24. A

25.


C

26. A

27.

C

28.

29. A
31.

D

30.

C
B

32.

B

D

33. A

34. A


35. A

36.

B

38.

B

37.

B

39.

D

40.

41.

D

42.

43.

C


46.

47.

C

48.

49. A

C
B

50. A

51.

52. A

C
D

53.

54.

55. A

56.


57. A

58. A

59.
63.

B

44. A

45. A

61.

C

D

D
B

60.

B

62.

C

B

64. A

C

65.

D

66.

67.

D

68. A
1

D


69.
71.

70.

C
B


72. A

73.

D

74.

75.

D

76. A

77.

C

79. A
81.

D

83.

C
D

78.


B

80.

B

82.

B

84.

C

85.

D

86. A

87.

D

88.

C
D

89.


B

90.

C

91.

B

92.

C

93.
95.

94. A

C
B
D

97.
99. A

96.

C


98.

C

100. A

101.

102.

C

103. A

104.

105.

D

B
B

C

108.

109.


C

110.

113.

D

114.

C

115. A

116.
B

C
B

118. A

119. A

120.
B

B

122.


123.
125.

C

112.

111. A

121.

C

106.

107.

117.

B

D

C

124. A

B


126.

B

127.

C

128.

B

129.

C

130.

B

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×