Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (711)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.3 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x) + g(x)] = a + b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

d = 120◦ .
Câu 2. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.


C. 2a.
D. 4a.
A.
2
Câu 3. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.
D. x = −5.
Câu 4. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của khối
chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 5.
D. V = 3.
Câu 5. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.

Câu 6.
mệnh đề sau, mệnh đềZ nào sai? Z
Z Cho hàm số f (x),
Z g(x) liên

Z tục trên R. Trong các Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
x+1
bằng
x→−∞ 6x − 2
1
1
A. 1.
B. .
C. .
2
6
Câu 8. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.

B. Hai mặt.
C. Một mặt.

Câu 7. Tính lim

D.

1
.
3

D. Ba mặt.

x2
Câu 9. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 0.
e
e
ln x p 2
1
Câu 10. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3

8
1
8
1
A. .
B. .
C. .
D. .
9
9
3
3
0 0 0 0
Câu 11. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
15
9
6
Trang 1/10 Mã đề 1



Câu 12. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

D. {3; 3}.

Câu 13. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 14. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.

D. 1 − sin 2x.

Câu 15. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. (−∞; +∞).

D. [1; 2].


Câu 16. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 17. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
Câu 18. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 5.
C.
.
D. 34.
A. 68.
17
Câu 19. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
Câu 20. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
8a
5a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
Câu 21. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 22. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 9 mặt.

Câu 23. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy

là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a3 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
Câu 24. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
Câu 25.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5

1
A.
.
B.
.
3
3

!n
5
C. − .
3

!n
4
D.
.
e

Câu 26. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e.

B. 3.

C. 2e + 1.

D.

2
.

e
Trang 2/10 Mã đề 1


Câu 27.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2 2.
B. 2.
C. 2 3.
D. 6.
!x
1
1−x
Câu 29. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. 1 − log2 3.
C. log2 3.
D. − log3 2.
Câu 28. [3-1214d] Cho hàm số y =

Câu 30. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.

C. 4.

D. 6.

x−1 y z+1
= =


2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 31. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 32. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
B. 8 3.
C.
.
D.
.
A. 6 3.
3
3
Câu 33.√Thể tích của tứ diện đều √

cạnh bằng a


a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
12
2
4
Câu 34. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
2n + 1
Câu 35. Tìm giới hạn lim
n+1
A. 3.
B. 1.
C. 2.
D. 0.


Câu 36. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
2

2

sin x
Câu 37.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 38. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 39. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2

9
1
A. .
B. .
C.
.
D.
.
5
5
10
10
Trang 3/10 Mã đề 1


Câu 40. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.
D. 0, 8.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 41. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
2−n
Câu 42. Giá trị của giới hạn lim

bằng
n+1
A. 1.
B. 0.
C. −1.
D. 2.
Câu 43. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C. 18.
D.
.
2
1

Câu 44. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.

D. D = R \ {1}.

d = 30◦ , biết S BC là tam giác đều
Câu 45. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√

a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
26
16
Câu 46. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (0; 2).
D. (2; +∞).
Câu 47. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.

1
B. lim √ = 0.
n

D. lim un = c (Với un = c là hằng số).
[ = 60◦ , S O
Câu 48. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng


2a 57
a 57
a 57
C.
A.
.
B. a 57.
.
D.
.
19
19
17
Câu 49. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 50. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.


C. 10.

D. 20.

Câu 51. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 5.
D. 0, 4.
Câu 52. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
1079
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 53. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp

theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
Câu 54. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {5; 3}.

D. {3; 4}.
Trang 4/10 Mã đề 1


Câu 55. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. −7.
D. Không tồn tại.
Z 1
Câu 56. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. 1.

C. .
2
4
Câu 57. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn

D. 0.

!
un
= −∞.
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 58. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
Câu 59. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.




5 13
A.
.
B. 2 13.
C. 26.
D. 2.
13
un
Câu 60. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 61. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+1
c+3

Câu 62. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.

D.

3b + 3ac
.
c+2

D. Khối 12 mặt đều.

Câu 63. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2.
D.
2
2
Câu 64. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.
D.
Z 2

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 65. Cho
x2
1
A. −3.
B. 0.
C. 1.
D.
log2 240 log2 15
Câu 66. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 3.
C. −8.
D.

P = 2i.
Hai cạnh.

3.

1.

Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là


3
3
a
4a 3
a3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
Câu 68. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Trang 5/10 Mã đề 1


Câu 69. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.


C. D = (0; +∞).

Câu 70. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

B. 0 < m ≤ 1.

1
3|x−2|

D. D = R.

= m − 2 có nghiệm

C. 0 ≤ m ≤ 1.

D. 2 < m ≤ 3.

Câu 71. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 2
a 3
a 3
A.

.
B.
.
C.
.
D. a3 3.
2
4
2
Câu 72. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

B. 7 3.
C. 16.
D. 8 3.
A. 8 2.
Câu 73. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 74. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B. un =

.
5n − 3n2
n2

1 − 2n
C. un =
.
5n + n2

n2 + n + 1
D. un =
.
(n + 1)2

Câu 75. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.

C. y0 = 1 + ln x.

D. y0 = x + ln x.

Câu 76. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 24.
D. 20.
Câu 77. Khối đa diện loại {5; 3} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 78. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
abc b2 + c2
a b2 + c2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

Câu 79. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4
Câu 80. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
C. 8.
D. 20.
Câu 81. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a 3
a3 3
5a3 3
4a3 3

A.
.
B.
.
C.
.
D.
.
3
2
3
3
Câu 82. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 5
a2 7
a 2
A.
.
B.
.
C.
.
D.
.

4
32
16
8
Trang 6/10 Mã đề 1


Câu 83. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là 2 −√1, phần ảo là √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.




2 − 1 − 3i lần lượt √l

B. Phần thực là √2, phần ảo là 1 − √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.

Câu 84. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.
D. Bốn mặt.
log(mx)
Câu 85. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất

log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
x+2
Câu 86. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Z 1
6
2
3
Câu 87. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.

B. 6.

C. −1.

D. 4.


Câu 88. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (I) và (III).
x+2
bằng?
Câu 89. Tính lim
x→2
x
A. 0.
B. 1.

C. Cả ba mệnh đề.

D. (II) và (III).

C. 3.

D. 2.

Câu 90. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.


D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 91. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 92. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Khơng thay đổi.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
Câu 93. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.

B. −2.

C. −4.

D.

67
.
27

Câu 94. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.

Trang 7/10 Mã đề 1


Câu 95. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 5
a3
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
25
3
5
25
Câu 96. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
1
sin n
A.
.

B.
.
C. .
D. √ .
n
n
n
n
Câu 97. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (1; 0; 2).
D. ~u = (2; 1; 6).
Câu 98. Phát biểu nào sau đây là sai?
1
= 0.
nk
1
C. lim qn = 0 (|q| > 1).
D. lim = 0.

n
Câu 99. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. 2a 2.
.
C. a 2.
D.
A.
2
4
3a
Câu 100. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a 2
2a
a
a
B.

.
C.
.
D. .
A. .
4
3
3
3
1
Câu 101. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 2.
D. 1.
A. lim un = c (un = c là hằng số).

Câu 102. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.

B. lim

C. 5.

D. 4.

Câu 103. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.

B. log2 13.
C. 2020.
D. log2 2020.
1
Câu 104. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
 π π
Câu 105. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. −1.
D. 7.
Câu 106. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
4
2
8
Câu 107. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC

√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
6
12
Trang 8/10 Mã đề 1


Câu 108. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 109. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
ln 10

D. f 0 (0) = 10.


Câu 110. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3 3
a3
.
B.
.
C.
.
D. a3 3.
A.
4
12
3
Câu 111. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là

A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 112. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 113. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 114. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {2}.
D. {5}.
Câu 115. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C. a.
D.
.
A. .
3

2
2

Câu 116. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A. 2; .
B. [3; 4).
C. (1; 2).
D.
;3 .
2
2
Câu 117. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.

D. 3.

Câu 118. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. m ≤ 3.
3


2

Câu 119. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα bα = (ab)α .
B. aαβ = (aα )β .
C. β = a β .
D. aα+β = aα .aβ .
a
Câu 120. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = −1.
D. m = 0.
!
!
!
x
1
2
2016
4
Câu 121. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017

2017
2017
2016
A. T = 1008.
B. T = 2017.
C. T = 2016.
D. T =
.
2017
Câu 122. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
Trang 9/10 Mã đề 1


B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 123. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 2.
D. 0.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 124. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 7.

C. 4.
D. 1.
Câu 125. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. 0.
D. e2016 .
1
Câu 126. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
! x3 −3mx2 +m
1
Câu 127. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
Câu 128. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
A. a 6.
B. 2a 6.
C. a 3.
D.
.
2
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √


3
3

a
a
3
3
2a3 3
.
B. a3 3.
.
D.
.
C.
A.

3
6
3
Câu 130.
thức nào sau đây√khơng có nghĩa
√ Biểu
−3
0
A. (− 2) .
B.
−1.
C. 0−1 .
D. (−1)−1 .
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3. A

4. A


5. A

6. A

7.

8. A

C
D

9.

10. A
13.

12. A
14.

15.

B

16.

D
C

18.

20.

B

17.

D

19.

D

D
B

26.
28.

29. A

30.
D

31.

37.

C
B


39.
41.
45.

C

36.

C

42.

B
C

C

48.

C

50. A
B

52. A

53.

B


54. A

55.

D

56. A

B

59. A
61.

D

63.

58.

D

60.

D

62. A
64. A

C


65. A
69.

C

46.

51.

67.

B

44. A

C

49. A

57.

B

34.

40.

B

47.


C

38. A
C

43.

B

32. A

B

35.

C

24. A

27. A

33.

C

21.

23.
25.


D

66.

C

68. A

B
D

70.
1

D


71.

C
D

73.
C

75.
77.

74.


C
D

80. A
82.

B
D

86.

B
D

88. A

89.

D

90.

91.

D

84. A

87.


93.

B

78.

B

83.
85.

C

76.

79. A
81.

72.

B
D

92. A

C

94. A


B
D

95.

96.

C

B

98.

C

99. A

100.

C

101. A

102.

97.

103.

B


104. A

105.

B

106. A
D

107.
C

109.

D

108.

C

110.

C

111. A

112.

D


113. A

114.

D

116.

D

115.
117.
119.

C
B

118. A
120. A

C

121. A

122.

123.

D


124.

B
B

125.

C

126.

127.

C

128. A

129.

D

130.

2

C

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×