Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (942)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.73 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 2.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.

Z

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) +C ⇒
!0
Z
Z


f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).

Z

f (u)dx = F(u) +C.

2

Câu 3. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 4.
C. 5.

D. 2.

Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Ba mặt.
D. Bốn mặt.



x = 1 + 3t





Câu 5. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t
x
=
−1
+

2t
x
=
1
+
7t
x = −1 + 2t
















A. 
B. 
.
D. 
y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t

y = −10 + 11t .
















z = 1 − 5t
z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
Câu 6. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. 1.
C. .
D. 2.
A.
2

2
2mx + 1
1
Câu 7. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. −5.
D. 0.
1
Câu 8. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 9. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 1.

D. 2.

Câu 10. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều đúng.

Câu 11. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −4.
D. −7.
27
Trang 1/10 Mã đề 1


Câu 12. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Câu 13. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.

(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 2.

D. 1.

tan x + m
nghịch biến trên khoảng
Câu 14. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
Câu 15.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
12

2
4


3
D.
.
4

0 0 0 0
0
Câu 16.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
2
2
7
3

log2 240 log2 15
Câu 17. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.

Câu 18. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
Câu 19. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
A. 5.
B. .
C. 25.
5

D. R.




D.

5.


Câu 20. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 21. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.

1
Câu 22. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = −3.
D. m = 4.
12 + 22 + · · · + n2
Câu 23. [3-1133d] Tính lim
n3
1
A. .
B. +∞.
3

Câu 24. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C.

2
.
3

C. {4; 3}.

D. 0.
D. {3; 3}.
Trang 2/10 Mã đề 1


Câu 25. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
C. f 0 (0) = 10.
D. f 0 (0) =
.
ln 10

[1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. − .
C. −3.

D. .
3
3
Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

= (aα )β .
B. β = a β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?

A. f 0 (0) = 1.
Câu 26.
A. 3.
Câu 27.
A. aαβ
Câu 28.
Z
A.
Z
C.

B. f 0 (0) = ln 10.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z

k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.


Câu 29. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



3
πa 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =

.
C. V =
.
D. V =
.
6
2
3
6
Câu 30. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 1.
C. 3.
D. 2.
2
x −9
Câu 31. Tính lim
x→3 x − 3
A. 3.
B. +∞.
C. −3.
D. 6.
Câu 32. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 4.
D. ln 14.
Câu 33. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.

C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 34. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 35. Tính lim
x→2

A. 3.

x+2
bằng?
x
B. 1.

C. 0.

D. 2.

Câu 36. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.
C. 4.

D. 2.

Câu 37. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

A. 9 mặt.
B. 7 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 38. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
Trang 3/10 Mã đề 1


Câu 39.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.


Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.

Câu 40. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.

C. 6.

D. 5.
! x3 −3mx2 +m
1
Câu 41. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).

B. m = 0.
C. m , 0.
D. m ∈ R.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 42. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
Câu 43. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 44. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≥ 3.

D. m ≤ 3.
2
3
7n − 2n + 1
Câu 45. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 1.
C. 0.
D. - .
3
3

Câu 46. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3
3

a 3
a3
a
3
A.
.
B.
.

C. a3 3.
D.
.
12
4
3
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
6
4
12
12
ln2 x
m
Câu 48. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x

e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
C. S = 32.
D. S = 24.
Câu 49. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 50. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
Trang 4/10 Mã đề 1


Câu 51. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

Câu 52. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.

C. D = (0; +∞).

D. D = R \ {1}.

Câu 53. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 8 m.
D. 12 m.
Câu 54. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).

Câu 55. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Câu 56. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 57. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.

C. 20.

D. 12.

Câu 58. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.

C. 10.

D. 8.


Câu 59. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
!4x
!2−x
3
2


Câu 60. Tập các số x thỏa mãn
3 # 2
"
!
"
!
#
2
2
2
2
; +∞ .
A. − ; +∞ .
B. −∞; .
C.
D. −∞; .
3
5
5

3
Câu 61. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
Câu 62. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC

√ với đáy và S C = a 3. 3Thể
√là
3
3
a 3
2a 6
a 3
a3 6
A.
.
B.
.
C.
.
D.
.
2
9
4

12
Câu 63. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 5.
C. 34.
D.
.
17
Câu 64. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.
D. Hình lăng trụ.
Trang 5/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m > 4.

Câu 65. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.


B. m ≤ 0.

Câu 66. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 67. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 68. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
6
18

9
Câu 69. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; 8).
D. A(−4; −8)(.
2
Câu 70. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
0

0

0

D. |z| = 5.

0

Câu 71. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3

a 3
A. a 3.
.
C.
.
D.
.
B.
2
3
2
Câu 72. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 73. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
6

24
12
√3
4
Câu 74. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 75. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (0; 1).
2

2

sin x
Câu 76.
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần lượt là
√ =2
√ [3-c] Giá trị nhỏ nhất √
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.


Câu 77. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
36
18
6
6
Câu 78. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. Không tồn tại.
D. −7.


Câu 79. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 4 − 2 ln 2.
Câu 80. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. √ .
B.
.
n
n

C.

sin n
.
n

D. 1.
D.

1
.
n
Trang 6/10 Mã đề 1


Câu 81. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?

A. 4.

B. 3.

C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 82. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 83. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)

8a
2a
a
5a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 84. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
5a3 3
a3 3
2a 3
.
B.
.

C.
.
D.
.
A.
3
3
3
2
Câu 85. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
!x
1
1−x

Câu 86. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log2 3.
B. − log3 2.
C. log2 3.
D. 1 − log2 3.
 π π
3
Câu 87. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.

C. 1.
D. −1.
Câu 88. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m > .
D. m ≥ .
4
4
4
4
Câu 89. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
x2
Câu 90. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = e, m = .
D. M = , m = 0.
e
e
Câu 91. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt

và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 2
11a2
a2 7
a2 5
A.
.
B.
.
C.
.
D.
.
4
32
8
16
Câu 92. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.

B. 5.

C. 9.

D. 7.

Trang 7/10 Mã đề 1


Câu 93. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 94. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 5
a3 15
a3 6
3
A.
.
B. a 6.
.
D.
.
C.
3
3
3
x+3
Câu 95. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng

x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 96. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
2

Câu 97. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.

D. 3 − log2 3.

Câu 98. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P =
.
B. P = 2i.
C. P = 2.
D. P =
.
2
2
Câu 99. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao

cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 3.
C. .
D. 1.
2
2
Câu 100. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m > 4.

Câu 101. [1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.

B. m < 0 ∨ m = 4.


Câu 102. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C.
.
D. a.
2
3
2
Câu 103. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B. a 3.
C.
.
D. 2a 6.
2
Câu 104. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

A. − 2 .
B. − .
C. −e.
e
e

D. −

1
.
2e

3

Câu 105. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e2 .
D. e3 .
Trang 8/10 Mã đề 1


x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác

√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
A. 2 3.
B. 6.

C. 2.
D. 2 2.
1
Câu 107. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 106. [3-1214d] Cho hàm số y =

Câu 108. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
A. −
.
B. − .
C.
.
D.
.
100
16
100
25
Câu 109. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).

B. (0; −2).
C. (−1; −7).
D. (2; 2).
Câu 110. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.

C. 30.

D. 20.

Câu 111. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.
5
Câu 112. Tính lim
n+3
A. 1.
B. 0.

C. 1.

D. 4.

C. 2.

x

D. 3.
!

!

!
1
2
2016
4
Câu 113. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
2017
Câu 114. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728

23
1637
1079
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 115. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
1
Câu 116. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.
C. −1.
D. 1.
Câu 117. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1

1
B. .
C. .
D. 4.
A. .
4
2
8
!
5 − 12x
Câu 118. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 119. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối tứ diện đều.
Trang 9/10 Mã đề 1


Câu 120. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
D. m = ± 3.
A. m = ±3.

B. m = ±1.
C. m = ± 2.
Câu 121. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.

D. 6 mặt.

Câu 122. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B. a 2.
C.
.
D.
.
3
2
Câu 123. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
C. 12.
D. 30.

Câu 124. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

a3
a3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
Câu 126. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 10.
B. 4.
C. 11.
D. 12.

Câu 127. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
1 − 2n
bằng?
Câu 128. [1] Tính lim
3n + 1
2
1
2
A. .
B. .
C. − .
D. 1.
3
3
3
d = 300 .
Câu 129. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.


3

3a3 3
a
3

A. V =
.
B. V = 3a3 3.
C. V = 6a3 .
D. V =
.
2
2
Câu 130. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

B

3.


B

4.

D

5.

B

6.

D

7.

D

8.

9.

D

10.

11. A

C
B


12. A
C

13.

D

15.
17. A

14.

D

16.

D
C

18.

19.

C

20. A

21.


C

22.

B

24.

B

23. A
25.

B

26.

27.

B

28.

29.

C

31.

D


33.

C

30.

D

32.

D

36.

37. A
D

39.

B

34.
D

35.

D

C

B

38.

C

40.

C

41.

B

42.

43.

B

44.

B
C

45.

D

46.


47.

D

48.

C

50.

C

49.

C

51.

D

52.

C

57.

D

C


58. A

C

60. A

61.

C

62.
D

D

64. A
66.

65. A
67.

D

56.

59.
63.

B


54.

53. A
55.

D

D

69.
1

D
B


70. A

71.

72.

C

73.

74.

C


75. A

76. A
78.
80.

C

D

77.

B

79.

B

81.

B

82. A

D

83. A
D


84.

85. A

86. A
88.

C

C

87.
B

89. A

90. A

91.

C
C

92.

C

93.

94.


C

95.

B

97.

B

96. A
98.
100.

99.

C
B

101.

102.

D

103. A

104.


D

105. A

C
B

106. A

107.

B

108. A

109.

B

110. A

111.

B

112.

B

114.

116.

C

113.

D

115.

D

117. A

B

118.

C

119.

120.

C

122.

123.


B

124.

D
B

126.

125. A
127.

C

D

D

128.

129. A

130.

2

C
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×