Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (35)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.99 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 1.
D. 3.
2n + 1
Câu 2. Tính giới hạn lim
3n + 2
2
3
1
B. .
C. .
D. 0.
A. .
2
3
2

Câu 3. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.




√ tích khối chóp S .ABC3 √
a 6
a3 2
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
18
36
6
6
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 4. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
A.

.
B.
.
C.
.
D. 2a2 2.
24
24
12
Câu 5. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 6. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 11 năm.
D. 12 năm.
Câu 7. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
d = 120◦ .
Câu 8. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng

3a
A. 4a.
B. 3a.
C.
.
D. 2a.
2
Câu 9. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 10. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 11. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Trang 1/11 Mã đề 1


Câu 12. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √


a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
8
4
Câu 13. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 5}.
1
Câu 14. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y

A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 15. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.

C. 8.

D. 30.

Câu 16. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 17. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
.
C.
.
D.
.
A. a .

B.
24
12
6
Câu 18. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (−1; −7).
D. (2; 2).
Câu 19. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 7.
C. 2.
D. 3.
2
x − 12x + 35
Câu 20. Tính lim
x→5
25 − 5x
2
2
A. −∞.
B. +∞.
C. − .
D. .
5
5
4
0
Câu 21. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng

ln 2
1
B. 2.
C.
.
D. 1.
A. .
2
2
Câu 22. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.

Câu 23. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. − .
C. .
D. 3.
3
3
Câu 24. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 1.
C. 10.

D. 2.
Câu 25. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
Câu 26.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
6
Câu 27. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. .
B.
.
n
n

C. {5; 3}.

D. {3; 4}.



a3 2
C.
.
2


a3 2
D.
.
12

1
C. √ .
n

D.

n+1
.
n
Trang 2/11 Mã đề 1


Câu 28. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.

D. Hình lăng trụ.


Câu 29.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.
.
B.
.
C. .
D.
.
2
4
4
12
Câu 30. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −4.
C. −7.
D.
.
27
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3

3
2a 3
4a 3
a3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 32. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
√3
4
Câu 33. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5

2
7
B. a 3 .
C. a 8 .
D. a 3 .
A. a 3 .
Câu 34. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 35. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
B. −2.
C. 2.
D. .
A. − .
2
2
2
Câu 36. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 1202 m.
D. 2400 m.
Câu 37. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng

A. −7, 2.
B. 0, 8.
C. 7, 2.
D. 72.

Câu 38. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 63.
D. 64.
Câu 39. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
Câu 40. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 41. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
Câu 42. [1] Đạo hàm của làm số y = log x là
1
1
A.
.

B. y0 = .
10 ln x
x

C. Khối 12 mặt đều.
C. y0 =

1
.
x ln 10

D. Khối tứ diện đều.
D. y0 =

ln 10
.
x
Trang 3/11 Mã đề 1


Câu 43. Tìm giới hạn lim
A. 2.

2n + 1
n+1
B. 1.

Câu 44. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.


C. 3.

D. 0.

C. 3.

D. 2.

Câu 45. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3
3

a 6
a 15
a
5
A.
.
B.
.
C. a3 6.
D.
.
3
3

3
n−1
Câu 46. Tính lim 2
n +2
A. 2.
B. 0.
C. 3.
D. 1.
Câu 47. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 48. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
1
Câu 49. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 1.
D. 2.
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là



3
3
a 2
a3 3
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
48
16
24
48
Câu 51. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a 3
2a3 3
a3 3

5a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 52. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vô nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
Câu 53. Tính lim
A. 0.

cos n + sin n
n2 + 1
B. 1.

C. +∞.

D. −∞.

Câu 54. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

A. f 0 (0) = ln 10.

B. f 0 (0) = 1.

C. f 0 (0) = 10.

Câu 55. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
A. un =
.
B.
u
=
.
n
5n + n2
5n − 3n2

C. un =

n2 − 3n
.
n2

Câu 56. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. 5.


D. f 0 (0) =

D. un =

1
.
ln 10

n2 + n + 1
.
(n + 1)2

2

D. −6.
Trang 4/11 Mã đề 1


Câu 57. Tính lim

x→−∞

A. 1.

x+1
bằng
6x − 2
1
B. .
2


1
.
3

C.

D.

Câu 58. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 5.
C. 5.
5

1
.
6



Câu 59. Các khẳng
!0 định nào sau đây là sai?
Z
A.
f (x)dx = f (x).
Z
Z

C.
k f (x)dx = k
f (x)dx, k là hằng số.

Z
B.
Z
D.

D. 25.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a

a
a
a 2
A.
.
B. .
C. .
D.
.
3
3
4
3

Câu 60. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

ln2 x
m
Câu 61. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
C. S = 32.
D. S = 22.
Câu 62. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).

A. 7 năm.
B. 9 năm.
C. 8 năm.
D. 10 năm.
Câu 63. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 64. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
Câu 65. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. −∞.

C. 3.

D. 0.

Câu 66. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. Ba mặt.
B. Một mặt.
C. Hai mặt.

D. Bốn mặt.

Câu 67. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.

D. 3 mặt.

1
Câu 68. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.
Câu 69. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2

C. y0 =


1
2 x . ln

x

.

D. y0 = 2 x . ln x.
Trang 5/11 Mã đề 1


!
!
!
4x
1
2
2016
Câu 70. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.

B. T = 2017.
C. T = 2016.
D. T = 1008.
2017
Câu 71. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 1587 m.
D. 27 m.
Câu 72. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. .
C. 3.
D. 1.
A. .
2
2
Câu 73. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
q
2

Câu 74. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
x+2
Câu 75. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
C. 3.
D. 2.
2n2 − 1
Câu 76. Tính lim 6
3n + n4
2
A. 2.
B. 1.
C. 0.
D. .
3
!
1
1
1

Câu 77. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
B. 2.
C. .
D. +∞.
A. .
2
2
Câu 78. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m > − .
D. m ≥ 0.
4
4
Câu 79. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
3
2
Câu 80. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2


A. 3 + 4 2.
B. 3 − 4 2.
C. −3 + 4 2.

Câu 81. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+1
c+2
!x
1
1−x
Câu 82. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. − log2 3.
C. 1 − log2 3.


D. −3 − 4 2.


D.

3b + 2ac
.
c+3

D. log2 3.

Câu 83. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
3
3
3
4a
2a 3
4a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3

3
3
Trang 6/11 Mã đề 1


2
Câu 84. Tính
√ mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √4
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 2 5.
2mx + 1
1
Câu 85. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. −2.
C. 1.
D. 0.
log(mx)
Câu 86. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m ≤ 0.


Câu 87. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 16.
D. 7 3.
A. 8 3.
Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. 2e2 .
D. −e2 .
Câu 89. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim

vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn

Câu 90. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5}.
D. {5; 2}.
Câu 91. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối 12 mặt đều.

Câu 92. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.

D. 8 mặt.

Câu 93. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).

B. (4; +∞).
C. (4; 6, 5].

D. (−∞; 6, 5).

Câu 94. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 1.
C. T = e + .
D. T = e + 3.
A. T = 4 + .
e
e
Câu 95. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
1
Câu 96. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 1.
D. 4.
Câu 97. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?

A. Có một.
B. Có vơ số.
C. Khơng có.
D. Có hai.
Câu 98. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 5.
D. 3.
Trang 7/11 Mã đề 1


Câu 99. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 100. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.

D. x = −2.

Câu 101. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a

5a
a
8a
.
B.
.
C.
.
D. .
A.
9
9
9
9
q
2
Câu 102. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 103. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 6.
C. 8.
D. 4.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
Câu 104. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√ = x + y.



18 11 − 29
9 11 + 19
2 11 − 3
9 11 − 19
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9
21
9
3
Z 1
Câu 105. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. 0.

D. .
2
4
0 0 0 0
0
Câu 106. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng



b a2 + c2
a b2 + c2
c a2 + b2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2




x = 1 + 3t




Câu 107. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1

+
2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t
















A. 

.
C. 
y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .
















z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t


4n2 + 1 − n + 2
Câu 108. Tính lim

bằng
2n − 3
3
B. 2.
C. 1.
D. +∞.
A. .
2
Câu 109. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
A. a.
B.
.
C. .
D. .
2
2
3
A. 1.

B.

Trang 8/11 Mã đề 1


x+3

Câu 110. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 111. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 112. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.

Câu 113. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .

B. [3; 4).
C. (1; 2).
D. 2; .
2
2
! x3 −3mx2 +m
1
Câu 114. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m = 0.
D. m , 0.
Câu 115. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 116. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m > .
D. m < .
A. m ≥ .
4

4
4
4
Câu 117. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 118. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

B. 0 < m ≤ 1.

Câu 119. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

1
3|x−2|

= m − 2 có nghiệm

C. 2 < m ≤ 3.

D. 0 ≤ m ≤ 1.

C. 8.

D. 4.


1

Câu 120. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (−∞; 1).

D. D = (1; +∞).

Câu 121. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 0.

D. 3.

Câu 122. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 96.

B. 82.
4x + 1
Câu 123. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.

B. 2.

C. 64.

D. 81.

C. −1.

D. −4.

8
x

Trang 9/11 Mã đề 1


Câu 124.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =

A.

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z


f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 125. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
2n − 3
Câu 126. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.

C. 12.

D. 20.

C. −∞.


D. +∞.

Câu 127. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −12.
C. −9.
D. −5.
Câu 128. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 18.
C. 27.
D. 12.
A.
2
!
5 − 12x
Câu 129. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. Vơ nghiệm.
C. 1.
D. 2.
tan x + m
nghịch biến trên khoảng
Câu 130. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1

 π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3. A

4. A

5.

6.

C
D


7.

D

16. A

B
C

18.

19.

C

20.

B

23.

B
D

22. A
C

24.

B


26.

B

27.

D
B

30. A

31.

B

32. A

33.

D

28. A

29.

D

34. A


B

36.

37. A
39.

D

14.

17.

35.

C

12.

13.

25.

C

10. A

11. A

21.


D

8.

9. A

15.

B

B

38. A
40.

B

41.

D

D

42.

C

43. A


44.

B

45. A

46.

B

47.

D

48.

49.

C

50. A

51.

C

52. A

53. A


54. A

55. A

56.

57.
59.

D

63.
68.

D

60. A
62.

C
D

65.

B

58.

B


61.

D

C
B

64.

D

66.

D

69. A
1

B


70.
72.

71.

D
B

73. A


74.

C

75.

76.

C

77.

78.

C

79.

80.

C

81. A

82.
84.

C


85.

86.

C

87.

88.

D
C

92. A
94.

D

98. A
100.

D

D
C

89.

B


91.

B

93.

C

95.

C
D

99.
B
D

103. A

104.

D

105.

B

B

107. A

C

108.

C

101. A

102.
106.

B

97.

C

96.

D

83. A

B

90.

D

109. A


110. A

111.

B

112.

C

113. A

114.

C

115.

B

117.

B

116.

B

118.


119.

C

120.

D

121. A

122.

D

123. A

124.

C

125.

C

126.

B

127.


128.

B

129.

130. A

2

C
B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×