Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (365)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.73 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
A. log2 a =
log2 a
loga 2

Câu 2. Thể
tích
của
khối
lập
phương

cạnh
bằng
a


2

3


2a 2
D. 2a3 2.
A.
.
B. V = 2a3 .
C. V = a3 2.
3
x−1
Câu 3. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
Câu 4. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
A.
.

B.
.
C.
.
c+2
c+3
c+2

D.

3b + 3ac
.
c+1

Câu 5. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.

B. +∞.

C. 0.

D. 1.

Câu 6. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > 1.


D. m > −1.

Câu 7. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
!
1
1
1
+ ··· +
Câu 8. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
B. .
C. +∞.
D. 2.
A. .
2
2
Câu 9. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 7 mặt.

D. 9 mặt.


Câu 10. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 212 triệu.
D. 216 triệu.
Câu 11. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4
Câu 12.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.


dx = x + C, C là hằng số.

B.
Z
D.

xα dx =

xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
x

Trang 1/10 Mã đề 1


Câu 13. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
1
Câu 14. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm

3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 15. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.

C. 24.

D. 144.

Câu 16. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.

C. 6.

D. 12.

Câu 17. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.

C. 3.

1

3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 18. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 19. Dãy
!n số nào sau đây có giới
!n hạn là 0?
1
5
B.
.
A. − .
3
3

!n
5
C.
.
3

!n
4

D.
.
e

Câu 20. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 21. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
C. 2e.
D. 3.
A. 2e + 1.
B. .
e
Câu 22. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C. 2a 6.
D.
.
2

Câu 23. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
C. y0 =
.
D. y0 = 2 x . ln x.
2 . ln x
ln 2
!
1
1
1
Câu 24. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 1.
C. 2.
D. 0.
2
Câu 25. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với

đáy (ABC)
tích khối chóp S .ABC là √

√ một góc bằng 60 . Thể

3
3
a 3
a
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
8
4
4
12
Câu 26. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Trang 2/10 Mã đề 1


Câu 27. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.

B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 28. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 1.
C. 6.

D. 2.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 + 19
18 11 − 29
C. Pmin =
. D. Pmin =
.
9
21

Câu 29. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
2 11 − 3
A. Pmin =
.
3


B. Pmin


9 11 − 19
=
.
9

12 + 22 + · · · + n2
Câu 30. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
3

C.

1
.
3

D. 0.

Câu 31. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
C. lim un = c (Với un = c là hằng số).

D. lim k = 0 với k > 1.
n
!x
1
1−x

Câu 32. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log2 3.
B. 1 − log2 3.
C. − log3 2.
D. log2 3.
A. lim qn = 1 với |q| > 1.

Câu 33. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.

.
D.
.
A.
6
12
4
12
Câu 35. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Z 1
Câu 36. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B.

1
.
4

1 − n2
bằng?

Câu 37. [1] Tính lim 2
2n + 1
1
A. 0.
B. .
2

C. 0.

D. 1.

1
C. − .
2

D.

Câu 38. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 72.
Z 2
ln(x + 1)
Câu 39. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 0.
C. 1.

Câu 40. Dãy! số nào có giới hạn bằng 0?!
n
n
6
−2
A. un =
.
B. un =
.
5
3

C. un =

n3 − 3n
.
n+1

1
.
3

D. 7, 2.

D. −3.
D. un = n2 − 4n.
Trang 3/10 Mã đề 1


Câu 41. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức

trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)20
C 20 .(3)30
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
1
Câu 42. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 1.
D. 2.

Câu 43. √Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. −7.
C. 6 2.
D. 7.
Câu 44. Tứ diện đều thuộc loại
A. {3; 4}.

B. {4; 3}.

C. {3; 3}.

D. {5; 3}.

Câu 45. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18


x2 + 3x + 5
Câu 46. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 1.
C. 0.
D. − .
4
4
2
Câu 47. [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4
4
4
1
Câu 48. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?

A. 4.
B. 1.
C. 3.
D. 2.
Câu 49. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 50. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 13 năm.
D. 11 năm.
Câu 51. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
1
Câu 52. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. 3.

C. −3.
D. − .
3
3

Câu 53. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
Trang 4/10 Mã đề 1



3a 38
A.
.
29


3a 58
B.
.
29


a 38
C.
.
29

D.


3a
.
29

Câu 54.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
Câu 55. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 5
11a2
a2 7
a2 2
A.
.
B.
.
C.
.
D.
.
16

32
8
4
Câu 56. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 57. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Có một.
D. Khơng có.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 1.
B. −1.
C. 2.
D. .
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 3

a3 2
a3 2
3
.
B. a 3.
.
D.
.
A.
C.
12
4
6

Câu 58. [2-c] Cho hàm số f (x) =

Câu 60. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 61. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2

−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
Câu 62. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 63. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 27.

D. 12.
! x3 −3mx2 +m
1
Câu 64. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
Câu 65. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).

B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Trang 5/10 Mã đề 1


Câu 66. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
3
2
Câu 67. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Thập nhị diện đều.
Câu 68. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.

C. D = R \ {0}.

D. V = 3S h.
D. Bát diện đều.
D. D = (0; +∞).

Câu 69. Cho
√ số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
A. |z| = 17.
Câu 70. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).


4n2 + 1 − n + 2
Câu 71. Tính lim
bằng
2n − 3
3
A. .
B. +∞.
C. 2.
2
2
Câu 72. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 8.
C. 7.

D. (4; 6, 5].

D. 1.
D. 6.


Câu 73. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 24.
D. 21.
Câu 74. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 75. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 14.
D. ln 4.
x−1 y z+1
= =

Câu 76. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.

C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
2

Câu 77. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
.
B. a 3.
C. a 2.
D.
.
A.
2
3
Câu 78. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
5
7
8
A.
; 0; 0 .

B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 79. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4e + 2
4e + 2
4 − 2e
Câu 80. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.

B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
Trang 6/10 Mã đề 1


2n + 1
Câu 81. Tính giới hạn lim
3n + 2
3
1
B. .
C. 0.
A. .
2
2
Câu 82. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D.

2
.
3

D. 13.

x+2

Câu 83. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 84. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 85. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.

D. 10 mặt.

Câu 86. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

D. Khối tứ diện đều.

C. Khối lập phương.

Câu 87. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.

(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 2.

D. 1.

Câu 88. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(−4; 8).
mx − 4
Câu 89. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 45.
D. 34.
Câu 90.
Z Các khẳng định
Z nào sau đây là sai?
Z
C.

!0


f (x)dx = f (x).
f (x)dx, k là hằng số.
B.
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

k f (x)dx = k

A.

Z

0
Câu 91. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3 √


2 3
A. 1.
B. 2.
C.
.
D. 3.
3

Câu 92. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
1
1
9
A. .
B. .
C.
.
D.
.
5
5
10
10
Câu 93. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.
C. 10.
D. 20.
Trang 7/10 Mã đề 1



Câu 94. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.

C. 8.

D. 30.

Câu 95. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
A. √
.
D.

a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 96. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng

A. 7.
B. 3.
C. 2.
D. 1.
Câu 97. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −6.
D. −3.
x+2
Câu 98. Tính lim
bằng?
x→2
x
A. 3.
B. 2.
C. 1.
D. 0.
Câu 99. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 1587 m.
D. 25 m.
Câu 100.
√ trụ tam giác đều có cạnh√bằng 1 là:
√ Thể tích của khối lăng

3
3
3
.
B.
.
C.
.
A.
12
2
4
Câu 101.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
2


a3 2
C.
.

4

D.

3
.
4


a3 2
D.
.
12

2

Câu 102. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.

D. 2 − log2 3.

Câu 103. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m


A. 8 2.
B. 16.

C. 8 3.
D. 7 3.
Câu 104. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.

D. 5 mặt.

Câu 105. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.
C. Không thay đổi.
D. Tăng lên (n − 1) lần.
Câu 106. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 107. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

C. 5.

D. 8.

Câu 108. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.

B. −1 + 2 sin 2x.
C. 1 − sin 2x.

D. −1 + sin x cos x.
q
2
Câu 109. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Trang 8/10 Mã đề 1


Câu 110. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
Câu 111. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.


Câu 112. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.
C. 108.

D. 36.

Câu 113. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.

D. 12.

C. 20.

Câu 114. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vô số.
Câu 115. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 2.

D. 1.

Câu 116. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.

B. {5; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 117. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.

D. 20.

C. 8.

Câu 118. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
tan x + m
Câu 119. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
[ = 60◦ , S O

Câu 120. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S BC) bằng


a 57
2a 57
a 57
D.
A.
.
B.
.
C. a 57.
.
19
19
17
x2 − 12x + 35
Câu 121. Tính lim
x→5
25 − 5x
2
2
A. .
B. +∞.
C. −∞.
D. − .
5
5


Câu 122. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a 3
a3 3
a3
A.
.
B.
.
C. a3 3.
D.
.
12
3
4
Câu 123. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B.

.
C. a 3.
D.
.
3
2
2
Trang 9/10 Mã đề 1


Câu 124. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 3.
D. 4.
d = 120◦ .
Câu 125. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 4a.
B. 3a.
C.
2
Câu 126. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là


2a3 6
a3 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
4
2
1 − 2n
Câu 127. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. .
C. − .
D. 1.
3
3

3
Câu 128. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 129. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 130. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.


B

D

3.

C

4.

5.

C

6.

D
D

7.

D

8.

9.

D


10.

11.

12.

B
C

13.

C
B

14. A

15.

D

16.

17.

D

18.

19.


C

C
B

20. A

B

21.

D

22.

B

23. A

24.

B

25. A

26.

B

27.


D

28.

C

29. A

30.

C

31. A

32. A

33.
35.

C

34.

B

36. A
C

37.

39.

D

38.

B

40.

B
B

41.

C

42.

43.

C

44.

45.
47.

D
D


51. A
B

55.

C

46.

B

49.
53.

B

D

48.

B

50.

B

52.

D


54.

D

56. A

C

57. A

58. A

59.

C

60.

61.

C

62.

C
C

63.


B

64.

65.

B

66. A

67.

68.

C
1

D

B


69.

70.

B

71.


D

73. A
75.

C

77. A
79.

B
D

C

74.

C

76.

D

78.

D

84.

85. A


B
C

86.
C

87.
89.

88.
D

B

90.

91.

B

92.

93.

B

94. A

95.


D

96.

97.

D

98.

99. A

C
D
C
B

100.

101.
103.

B

82. A

C

83.


72.

80.

81.

D

D

C

102.

D

104.

B

C
D

105. A

106.

107. A


108.

109. A

110.

111. A

112. A

113. A

114.

B
B

115.

B

116.

117.

B

118.

119.


B
C

D

120.

B

121. A

122.

B

123. A

124.

C

125.

C

126.

127.


C

128.

129.

D

130. A

2

C
B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×