Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (386)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.46 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
2
4
12


Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
12
6
4
12
1 − n2
Câu 3. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. .
D. − .

3
2
2
x−3 x−2
x−3
x−2
Câu 4. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
x
9
Câu 5. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. 2.
D. .
2
3
2
Câu 6. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −2.
D. m = −3.
Câu 7. Bát diện đều thuộc loại

A. {3; 4}.
B. {3; 3}.

C. {4; 3}.

D. {5; 3}.

Câu 8. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.

D. Không tồn tại.

Câu 9. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

D. Khối 20 mặt đều.

0

0

C. Khối 12 mặt đều.

0

Câu 10. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0

ABC.A0 B

√ C là
3
a 3
a3
a3 3
3
A.
.
B. a .
C.
.
D.
.
2
3
6
Câu 11. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 12. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
x+3
Câu 13. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =

nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 1.
D. 2.
d = 120◦ .
Câu 14. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B.
.
C. 4a.
D. 3a.
2
Trang 1/11 Mã đề 1


Câu 15. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B.
D. a 6.
A. a 3.

.
C. 2a 6.
2
Câu 16. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 22016 .
D. 1.
Câu 17. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
Câu 18. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.

D. 4 mặt.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 22.

D. S = 32.


Câu 19. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
1
Câu 20. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
2n − 3
Câu 21. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 22. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
Câu 23.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.

B.
0dx = C, C là hằng số.
Z x
Z
xα+1
+ C, C là hằng số.
C.
dx = x + C, C là hằng số.
D.
xα dx =
α+1
Câu 24. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
−2x2

Câu 25. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 2 .
B.
.
e
2e3

trên đoạn [1; 2] là
1
C. √ .
2 e


D. −1 + 2 sin 2x.
D.

2
.
e3

Câu 26. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12

4
Câu 27. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2.
B.
.
C. 2 13.
D. 26.
13
Câu 28. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.
C. y0 = ln x − 1.
D. y0 = x + ln x.
Trang 2/11 Mã đề 1


Câu 29. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 30. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).


Câu 31. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
d = 300 .
Câu 32. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3

a 3
3a3 3
3
3
A. V =
.
B. V = 3a 3.
.
C. V = 6a .
D. V =
2
2
Câu 33. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?

Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
2

2

sin x
Câu 34. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x √
lần lượt là
√ =2
A. 2 và 3.
B. 2 2 và 3.

C. 2 và 2 2.
D. 2 và 3.
1

Câu 35. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.

D. D = R \ {1}.

Câu 36. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log 14 x.
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √

2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 38. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Câu 39. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 40. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 41. Dãy số nào sau đây có giới hạn khác 0?
1

sin n
A. .
B.
.
n
n

1
C. √ .
n

D.

n+1
.
n

Câu 42. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
Trang 3/11 Mã đề 1


B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 43.
có nghĩa
√ Biểu thức nào sau đây không
−3

−1
−1.
B. (−1) .
A.


C. (− 2)0 .

D. 0−1 .

Câu 44. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.

C. 2.

D. 5.

Câu 45. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 46.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.

B.
.
A.
6
12
Câu 47. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.


a3 2
C.
.
2


a3 2
D.
.
4

C. 10 cạnh.

D. 9 cạnh.

Câu 48. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.

C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 49. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m < 0.

Câu 50. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
3

6
2
Câu 51. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
Câu 52. Tính lim
A. 1.

B. Câu (III) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.

cos n + sin n
n2 + 1
B. −∞.

C. +∞.
D. 0.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 53. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.

1
C. lim un = 1.
D. lim un = .
2
4
2
Câu 54. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > −1.
D. m > 0.
Trang 4/11 Mã đề 1


Câu 55. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 56. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 4.
D. 0, 5.
Câu 57. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.

C. m > 3.
D. m ≥ 3.
2

Câu 58. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.

D. 1 − log2 3.
q
2
Câu 59. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 60. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .

A. k = .
6
15
18
9
Câu 61. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
Câu 62.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.

k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

2x + 1
x→+∞ x + 1

Câu 63. Tính giới hạn lim

1
.
D. −1.
2
x−3 x−2 x−1
x
Câu 64. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).

A. 1.

B. 2.

C.

Câu 65. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. .
C. 5.
5


D. 5.

Câu 66. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = −18.
Trang 5/11 Mã đề 1


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.




2 11 − 3
9 11 + 19
9 11 − 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
√3
4
Câu 68. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
7
2
B. a 8 .
C. a 3 .
D. a 3 .
A. a 3 .

Câu 67. [12210d] Xét các số thực dương x, y thỏa mãn log3


Câu 69. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m , 0.
2
x − 5x + 6
Câu 70. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. 5.

D. m = 0.
D. −1.


Câu 71. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3
a3 3
A.
.
B.

.
C.
.
D. a3 3.
12
4
3
2
Câu 72. Cho z là nghiệm của phương trình√ x + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2
Câu 73. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là

3

a3 3
a3 2
a
3
A.
.
B.
.
C. a3 3.
D.
.
2
2
4
Câu 75. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
a
2a
.
B.
.
C.
.
D. .
A.

9
9
9
9
Câu 76. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 77. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
Câu 78. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
3
x −1
Câu 79. Tính lim
x→1 x − 1
A. −∞.
B. 0.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

C. 20.

D. 12.


C. 3.

D. +∞.

Câu 80. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4 − 2e
4e + 2
4e + 2
Câu 81. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6

a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
24
48
8
24
Trang 6/11 Mã đề 1


1
Câu 82. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 83. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 21.

D. 22.
Câu 84. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 6 mặt.
D. 9 mặt.
1
bằng
Câu 85. [1] Giá trị của biểu thức log √3
10
1
1
A. 3.
B. − .
C. .
D. −3.
3
3
Câu 86. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 9.
B. 3 3.
C. 8.
D. 27.

Câu 87. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.

C. 64.
D. 63.
Câu 88. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

3
3
a 3
a 3
a3
A. a3 .
B.
.
C.
.
D.
.
3
9
3




Câu 89. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3

A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
4
4
Câu 90. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
5
Câu 91. Tính lim
n+3
A. 2.
B. 0.
C. 1.
D. 3.
 π
Câu 92. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4

3 π6
A. e .
B. 1.
C.
e .
D.
e .
2
2
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là

3
3

a3 2
a
2
a
3
A.
.
B. a3 3.
C.
.
D.
.
4

12
6
Câu 94. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
2

2

A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Trang 7/11 Mã đề 1



Câu 95. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 3.

D. 2.

Câu 96. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.

B. =
=
.
2
3
4
2
3
−1
x−2 y+2 z−3
x y z−1
C. = =
.
D.
=
=
.
1 1
1
2
2
2


4n2 + 1 − n + 2
Câu 97. Tính lim
bằng
2n − 3
3
A. .

B. +∞.
C. 2.
D. 1.
2
Câu 98. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 99. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.

C. 6.

D. 8.

Câu 100. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. Không tồn tại.

D. 13.

Câu 101. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.

C. 8.


D. 20.

Câu 102. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.

C. 5.

D. 4.



x = 1 + 3t




Câu 103. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .

















z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
Câu 104. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 3.

D. 0.

Câu 105. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


a3 3
a3 6
a3 3
a3 2
A.
.
B.
.
C.
.
D.

.
48
48
24
16
Câu 106. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 20.
D. 24.
log2 240 log2 15
Câu 107. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 1.
C. 3.
D. −8.
Trang 8/11 Mã đề 1


1
1
1
Câu 108. Tính lim
+
+ ··· +

1.2 2.3
n(n + 1)

!

3
.
D. 1.
2
Câu 109. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
a 3
4a 3
8a 3
.
B.
.
C.
.
D.
.
A.

3
9
9
9
x+1
Câu 110. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
2
6
3
A. 2.

B. 0.

C.

Câu 111. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m = 4.
!
x+1
Câu 113. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A.
.
B.
.
C.
.
D. 2017.
2017
2018
2018

Câu 112. [3-1226d] Tìm tham số thực m để phương trình

Câu 114. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?

A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

Câu 115. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 82.

B. 96.

C. 64.

D. 81.


8
x

Câu 116. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (2; 2).

D. (0; −2).

Câu 117. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. 6.

D. −1.

Câu 118. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.

C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.

Câu 120. Xác định phần ảo của số√phức z = ( 2 + 3i)2

A. −7.
B. −6 2.
C. 7.
D. 6 2.
4x + 1
Câu 121. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.
C. 4.
D. 2.
Câu 119. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Trang 9/11 Mã đề 1


Câu 122. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e.

C. 2e + 1.

B. 3.

12 + 22 + · · · + n2

n3
2
A. +∞.
B. .
3
Câu 124. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = x
.
B. y0 = 2 x . ln x.
2 . ln x
Câu 125. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị
1
A. 2.
B. .
2

f 0 (1) bằng
ln 2
C.
.
2

Câu 128. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.

C. 20.

D.


2
.
e

Câu 123. [3-1133d] Tính lim

C.

1
.
3

C. y0 = 2 x . ln 2.

D. 0.

D. y0 =

1
.
ln 2

D. 1.


Câu 126. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng



a 38
3a
3a 58
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
3
2
Câu 127. Giá

√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
B. −3 − 4 2.
C. 3 − 4 2.
D. 3 + 4 2.
A. −3 + 4 2.
D. 12.

3

2
x
Câu 129. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
B. m = ±3.
C. m = ±1.
D. m = ± 2.
A. m = ± 3.

Câu 130. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
6

6
36
18

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.

D

4. A

5. A

6.

7. A


8.
C

9.
11.

C
D

10. A

B

13. A

12.

B

14.

B

15.

D

16. A

18.


D

19.

C
C

20.

C

21.

22.

C

23.

24.
26.

D

25. A

B

28. A

C

30.
32.

D

D

27.

B

29.

B

31.

B

33.

D

34.

B

35.


36.

B

37.

C

38. A

39.

C

40. A

41.

D

43.

D

42.

D

44. A

46.

B

48.
50.

D

52.

D
C

54.

45.

C

47.

C

49.

B

D


53.

D

55.

B

57.

58.

B

59.

63.

D

B
D
C

62.

B

64.


65. A

66.

67. A

68. A

69.

B

51.

56.
61.

B

70.

C
1

D
B
D
D



71.

72. A

C

74. A
76.

D

77. A

78.

D

79.

80.

D

81. A

82.

D

83.


84.

D

85.

86.

B
D

89.

90.

D

91.

92.
94.

D
B

100.

B


B

97.

D

99.

D

103.

104.

D

107.
D

110.

C

105. A

B

108.
C


112.

D

D

109.

B

111.

B

113.

B

115.

114. A
116.

D

119.

120.

D


117.

118. A
D
B

123.

C

125. A

126.

C

127. A

128.

C

129.

2

B
C


C

D

C

121.

124.

130.

C

101. A

102. A

122.

B

95. A

C

98.

D


93. A

C

96.

C

87. A

88.

106.

C

75.

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×