Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (495)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.85 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
8
7
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3



x=t






Câu 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
C. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
D. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
x
x
x
Câu 3. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 1.

B. 3.
C. Vô nghiệm.
D. 2.
Câu 4. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 6510 m.
D. 1134 m.
d = 120◦ .
Câu 5. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 4a.
C. 3a.
D. 2a.
A.
2
Câu 6. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã √cho là√1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 7. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).

Câu 8. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m > − .
D. m ≥ 0.
A. − < m < 0.
4
4
2x + 1
Câu 9. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. 2.
C. −1.
D. .
2
Câu 10. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).

D. (1; +∞).

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 11. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 2
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
24
24
12
Trang 1/10 Mã đề 1


Câu 12. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728
23
.
B.
.
C.

.
D.
.
A.
68
4913
4913
4913
Câu 13. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. 6.
C. 9.
D. .
A. .
2
2
Câu 14. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

D. lim f (x) = f (a).
x→a


x→a

Câu 15. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.

Câu 16. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 4.
D. 36.
Câu 17. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 18. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 2.
D. 7.
Câu 19. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3

3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
8
48
Câu 20.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
12
2



a3 2
C.
.
6


a3 2
D.
.
4

2

Câu 21. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 7.
C. 5.
!4x
!2−x
3
2
Câu 22. Tập các số x thỏa mãn


#
" 3
! 2
#
2

2
2
A. −∞; .
B. − ; +∞ .
C. −∞; .
5
3
3

D. 6.

"

!
2
D.
; +∞ .
5

[ = 60◦ , S A ⊥ (ABCD).
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là

√ S C là a. Thể tích khối
3
3
3

a

3
a
2
a
2
A. a3 3.
B.
.
C.
.
D.
.
6
12
4
Câu 24. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.

Câu 25. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 64.
D. 63.
Câu 26. Xét hai khẳng đinh sau
Trang 2/10 Mã đề 1



(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Cả hai đều sai.

D. Chỉ có (II) đúng.

Câu 27. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 8 năm.
D. 9 năm.
Câu 28. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.
D. {2}.
2−n
bằng
Câu 29. Giá trị của giới hạn lim
n+1
A. −1.
B. 1.
C. 0.

D. 2.
Câu 30. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 7 3.
B. 16.
C. 8 3.
D. 8 2.
d = 30◦ , biết S BC là tam giác đều
Câu 31. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
16

13
9
Câu 32. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; .
D. −∞; − .
2
2
2
2
2n + 1
Câu 33. Tìm giới hạn lim
n+1
A. 1.
B. 2.

C. 3.

D. 0.

Câu 34. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67

A.
.
B. −2.
C. −7.
D. −4.
27
!
1
1
1
+
+ ··· +
Câu 35. Tính lim
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. .
D. 2.
2
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
4a 3
2a 3
a3
a3

A.
.
B.
.
C.
.
D.
.
3
3
3
6
Z 3
a
x
a
Câu 37. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 28.
D. P = 4.
Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3
4a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Trang 3/10 Mã đề 1


Câu 39. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1

1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
6
18
15
Câu 40. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
23
9
.
B.
.
C. − .
D. −
.
A.
25
100
16
100
Câu 41. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối lập phương.

D. Khối 12 mặt đều.
Z 2
ln(x + 1)
Câu 42. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 0.
C. 1.
D. −3.
log7 16
Câu 43. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. 2.
C. 4.
D. −2.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 44. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A.
.

B. 2017.
C.
.
D.
.
2018
2018
2017
Câu 45. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.
C. 10.
D. 12.
Câu 46. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
Câu 47. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

D. {3; 3}.

Câu 48. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.


C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 49. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).

C. D = R \ {1}.

D. D = R.

Câu 50. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 64cm3 .
D. 27cm3 .
Câu 51. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log π4 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log 14 x.
[ = 60◦ , S O
Câu 52. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.

√ Khoảng cách từ O đến (S BC) bằng


a 57
a 57
2a 57
A.
D.
.
B.
.
C. a 57.
.
17
19
19
Câu 53. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 68.
C. 34.
D.
.
17
Trang 4/10 Mã đề 1



Câu 54. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.

D. Hai cạnh.

x2
Câu 55. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = , m = 0.
C. M = e, m = 0.
D. M = e, m = 1.
e
e
2

Câu 56. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 2 − log2 3.

D. 3 − log2 3.

Câu 57. Phát biểu nào sau đây là sai?
1
B. lim qn = 0 (|q| > 1).

A. lim = 0.
n
1
D. lim un = c (un = c là hằng số).
C. lim k = 0.
n
Câu 58. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

D. Khơng có câu nào
sai.
Câu 59. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 60. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.

C. Câu (I) sai.

C. 6.


D. 8.

Câu 61. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. − 2 .
D. − .
A. −e.
B. − .
2e
e
e
Câu 62. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 3.
D. V = 5.
Câu 63. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 16π.
D. 8π.
Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √



3
3

2a3 3
a
3
a
3
A.
.
B. a3 3.
C.
.
D.
.
3
3
6
log 2x
Câu 65. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3

.
C. y0 =
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
Trang 5/10 Mã đề 1


Câu 66. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + .
D. T = e + 1.
e
e
Câu 67. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. +∞.

B. 0.


C. 1.

B. 2 ≤ m ≤ 3.

1

= m − 2 có nghiệm
3|x−2|
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.

Câu 68. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

D. 2.

Câu 69. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
A.
.
B.
.
C.

.
D. a3 .
2
6
3
Câu 70. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. Không tồn tại.
D. 13.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
D. 2.
A. 1.
B. −1.
C. .
2

Câu 72. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.



x = 1 + 3t





Câu 73. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t
x

=
1
+
7t
x
=
−1
+
2t
x = −1 + 2t
















A. 
B. 
.
C. 

y = 1 + 4t .
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t .
















z = 1 − 5t
z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
Câu 71. [2-c] Cho hàm số f (x) =

Câu 74. Tính lim
A. +∞.

x→1


x3 − 1
x−1

B. 0.

C. 3.

Câu 75. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.
C. y0 = ln x − 1.
!2x−1
!2−x
3
3
Câu 76. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [3; +∞).
Câu 77. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = 0.

D. −∞.

D. y0 = 1 + ln x.

D. [1; +∞).
D. x = −2.

Câu 78. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. 3.
Z 1
Câu 79. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.

B.

1
.
4

C. 0.

D.

1
.
2

Trang 6/10 Mã đề 1


x2 − 9
Câu 80. Tính lim
x→3 x − 3
A. 3.
B. 6.

D. +∞.

C. −3.

Câu 81. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
Câu 82. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −4.

D. −2.

Câu 83. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 2.

C. 1.

D. 0.

Câu 84. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 85. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.

D. 7, 2.

Câu 86. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=

=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y z−1
.
B.
=
=
.
A. = =
1 1
1
2
2
2
x−2 y−2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.

2
3
4
2
3
−1
!x
1
1−x
Câu 87. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. log2 3.
C. − log3 2.
D. 1 − log2 3.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].

D. (2; +∞).
Câu 88. [4-1213d] Cho hai hàm số y =

Câu 89. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
Câu 90.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.

B.

Z
f (x)dx −


Z
g(x)dx.

Câu 91. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.

D.

C. 4.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D. 2.
Trang 7/10 Mã đề 1


Câu 92. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 93. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 4.
D. 6.

Câu 94. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.

C. 12 cạnh.

D. 9 cạnh.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 − 19
9 11 + 19
C. Pmin =
. D. Pmin =
.
9
9

Câu 95. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x +

√ y.
2 11 − 3
18 11 − 29
. B. Pmin =
.
A. Pmin =

21
3
x−2
Câu 96. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
3

C. 1.

D. 2.

Câu 97. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
9
1
2
1
.
B.
.
C. .
D. .
A.
10
10
5
5

2
Câu 98. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.

Câu 99. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
x+3
Câu 100. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 1.
D. 2.
√3
Câu 101. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
C. − .
D. 3.
A. −3.

B. .
3
3
Câu 102. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 103. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D. log2 a = loga 2.
A. log2 a = − loga 2.
B. log2 a =
loga 2
log2 a
q
2
Câu 104. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3

A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Trang 8/10 Mã đề 1


x+1
Câu 105. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
3
4
x−3
Câu 106. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.

C. 3.

D. 1.

C. 0.


D. 1.

Câu 107. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 5 mặt.

D. 4 mặt.

Câu 108. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
1
Câu 109. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.

C. 4.
D. 1.
Câu 110. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.

D. m , 0.

Câu 111. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
a
2a
.
B.
.
C.
.
D. .
A.
9
9
9
9
Câu 112.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.

B. 1.
C. 2.
D. 10.
A. 2.
Câu 113. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48
Câu 114. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.

C. −1 + 2 sin 2x.
D. 1 + 2 sin 2x.
Câu 115. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.

D. −7.

Câu 116. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
Câu 117. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 118. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3

a 3
A.
.
B. a 3.
C.
.
D.
.
2
2
3
Trang 9/10 Mã đề 1


d = 60◦ . Đường chéo
Câu 119. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
.
B.
.
C. a 6.

D.
.
A.
3
3
3
Câu 120. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
Câu 121. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 12 m.
D. 24 m.
Câu 122. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 2020.
D. 13.
1
Câu 123. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.

D. 0 < m ≤ 1.
Câu 124. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 10 năm.
D. 11 năm.
1 3
Câu 125. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 126. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
Câu 127. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
4x + 1
Câu 128. [1] Tính lim
bằng?

x→−∞ x + 1
A. −1.
B. 4.
C. 2.
D. −4.
Câu 129. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −9.
C. −5.
D. −12.
Câu 130.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.

0dx = C, C là hằng số.

D.


dx = x + C, C là hằng số.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.

2.

B

3. A

4.

C

5. A

6.

C


7. A

8.

C

10.

C

9.

B
C

11.

12.

B
D

14.

13. A
15.

B

16.


C

17.

B

18.

C

19.

B

20. A

21.

B

22.

23.

D

24.

27.


D

29. A
31.

C
B

35. A

B

30.

B

32.

B

34.

B

36. A
D

38. A


40.

D

41. A

42.

D

43. A

44.

45.

C

46.

B

47. A

48.

B

49.


50.

D

D
C

53.

B

D

55.

56.

57.

C

58.

D

C
B

59. A


60. A

61.
B

B

64.

65. A
67.

B

51.

54. A

62.

D

28.

37.

52.

C


26.

25. A

33.

B

66.

C
B

68. A

B

69. A

70.
1

B


72.

71. A
73.


C

74.
D

75.

C
D

76.

77. A

78. A

79.

D

80.

81.

B

82.

83.


B

84. A

85.
89.

B
D

86. A

C

87. A
91.

D

C
B

88.

B

90.

B


92. A

93. A

94.

B

95.

B

96.

97.

B

98.

B

99.

B

100.

B


101.

B

102.

103.

B

104.

105.

B

106.

C
C

107.

D

108.

109.

D


110.

111.

112.

C

113. A
115.

D
B

D
B

114.

C

116. A

B

118.

117. A
119.


D

120.

C

121. A

C

122. A

123.

124.

C

125.

B

126. A

127.

B

128.


129.

C

D

130. A

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×