Tải bản đầy đủ (.pdf) (11 trang)

Đề ôn toán thpt (633)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (146.24 KB, 11 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
log(mx)
Câu 2. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 3. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −5.
C. x = 0.

D. x = −8.

Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên


(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
8a3 3
4a3 3
8a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 5. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.
C. 8.
D. 20.
Câu 6. √
Thể tích của tứ diện đều cạnh
√ bằng a


3

3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
4
6
12
Câu 7. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. 3.
C. .
D. .
2
2

Câu 8. Thể tích của khối lập phương có cạnh bằng a 2




2a3 2
3
3
A. V = a 2.
B. 2a 2.
C.
.
D. V = 2a3 .
3
Câu 9. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [1; 2].
C. [−1; 2).
D. (1; 2).
Câu 10. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

3
a3
a3 3
a
3
A.
.
B.
.
C. a3 .

D.
.
3
3
9
Câu 11. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
Z 1
6
2
3
Câu 12. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.


B. 6.

C. 4.

D. 2.

Câu 13. Hàm số y = x − 3x + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).

C. (0; +∞).

D. (−∞; 2).

Câu 14. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.

C. 10.

D. 20.

3

2

Trang 1/11 Mã đề 1


Câu 15. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.

B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
D. 1.
!
x+1
Câu 16. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A.
.
B. 2017.
C.
.
D.
.
2017
2018
2018
Câu 17. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 18. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).

B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 19. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. β = a β .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
Câu 20. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 21. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. 7.
C. .
D.
.
2
2
Câu 22. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.


B. 9.

C. 0.

D. 7.

Câu 23. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log 14 x.
D. y = log π4 x.
Câu 24. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
Câu 25. Hàm số y =
A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

C. {3; 3}.

D. {4; 3}.

C. x = 3.

D. x = 2.


Câu 26. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
5
3
25
2−n
Câu 27. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 2.
C. 1.
D. −1.
Câu 28. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng





a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
6
3
2
2

Câu 29. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log2 3.

D. 1 − log3 2.
Trang 2/11 Mã đề 1


Câu 30. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m


A. 8 2.
B. 16.
C. 7 3.
D. 8 3.
Câu 31. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.
C. 1.

D. 2.

Câu 32. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 2020.
D. 13.
Câu 33. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.

C. 20.

D. 8.

Câu 34. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
C. m = ± 2.
D. m = ±3.

A. m = ±1.
B. m = ± 3.
Câu 35. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.
C. −1.
D. 2.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 36. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
Câu 37. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. Vơ số.
D. 1.

Câu 38. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là


a3
a3 3

a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
4
12
Câu 39. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.
Câu 40. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 41. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.

2

Câu 42. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 7.
C. 5.

D. 8.

Câu 43. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.

D. 12.

C. 20.

Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

3
3

2a
3
a
3
a
3

A. a3 3.
B.
.
C.
.
D.
.
3
3
6
Câu 45. Cho

√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
2

2

sin x
Câu 46.
+ 2cos x lần
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
√ lượt là
A. 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.


Trang 3/11 Mã đề 1


x2
Câu 47. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = .
e
e
Câu 48. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 49. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 1.
D. 0.
Câu 50. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=

=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
3
4
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.

=
=
.
2
3
−1
2
2
2
Câu 51. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
.
B.
.
C. .
D. .
A.
10
10
5
5
x
x
Câu 52. [3-1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.

B. m ≤ 3.
C. m > 3.
D. m < 3.
Câu 53. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.
3
2
Câu 54. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Z 2
ln(x + 1)
Câu 55. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 1.
C. 3.

D. −3.
Câu 56. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
; +∞ .
B.
C. −∞; .
2
2
2

!
1
D. −∞; − .
2

Câu 57. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
n−1
Câu 58. Tính lim 2
n +2
A. 1.
B. 3.

D. 0.


B. f (x) liên tục trên K.
D. f (x) xác định trên K.

C. 2.

1
Câu 59. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
x−1 y z+1
Câu 60. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
Trang 4/11 Mã đề 1


A. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.

B. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.


Câu 61. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 14.
D. ln 12.
Câu 62. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m ≥ 3.
D. m < 3.
Câu 63. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 64. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; 8).
D. A(−4; −8)(.
!x
1

Câu 65. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log2 3.
B. log2 3.
C. 1 − log2 3.

D. − log3 2.
Câu 66. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình chóp.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


2 11 − 3
18 11 − 29
C. Pmin =
.
D. Pmin =
.
3
21

Câu 67. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 − 19
A. Pmin =
.
9

B. Pmin



9 11 + 19
=
.
9

Câu 68.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =

f (x)dx + g(x)dx.

Câu 69. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −2.
A. −4.
B. −7.
C.
27
0 0 0 0
0
Câu 70.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3

2

Câu 71. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 72. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.

C. 144.

D. 4.
x+2
Câu 73. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.
1
Câu 74. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.

B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Trang 5/11 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 76. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.

B. 3.
C. 2.
D. 5.
Câu 75. [4-1212d] Cho hai hàm số y =

Câu 77. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).

D. R.

Câu 78.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 1.
C. 3.
D. 2.


4n2 + 1 − n + 2
bằng
Câu 79. Tính lim
2n − 3
3
A. +∞.
B. .
C. 1.
D. 2.
2

Câu 80. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
!4x
!2−x
2
3
Câu 81. Tập các số x thỏa mãn


3 # 2
#
"
!
"
!
2
2
2
2
; +∞ .
A. −∞; .
B. −∞; .
C. − ; +∞ .
D.
5
3
3

5
Câu 82. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
A.
.
B.
.
C.
.
D.
.
48
24
24
8
Câu 83. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 84. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

1
B. V = S h.
C. V = 3S h.
A. V = S h.
2
Câu 85. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 3.
!2x−1
!2−x
3
3
Câu 86. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).

1
D. V = S h.
3
D. 2.

D. (+∞; −∞).

Câu 87. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
Trang 6/11 Mã đề 1


(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
C. Câu (III) sai.
D. Câu (II) sai.
sai.
Câu 88. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.
D. Năm mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 89. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 90. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).

B. (1; −3).
C. (0; −2).

D. (−1; −7).

Câu 91. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 1.

C. 3.

D. 4.

Câu 92. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 1.
D. 2.
2
x − 5x + 6
Câu 93. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.

C. 0.
D. −1.
Câu 94. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
A. m =
4 − 2e
4e + 2
4e + 2
Câu 95. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
n3 − 3n
A. un =
.
B. un =
.
C. un =
.
3
5
n+1


D. m =

1 + 2e
.
4 − 2e

D. un = n2 − 4n.

Câu 96. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Z 3
x
a
a
Câu 97. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 4.
D. P = 16.
1
Câu 98. Hàm số y = x + có giá trị cực đại là
x
A. −1.

B. 2.
C. −2.
D. 1.
Câu 99. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
2
8
4
0
Câu 100. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
Trang 7/11 Mã đề 1


1
Câu 101. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.

D. (−∞; −2) ∪ (−1; +∞).
Câu 102. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
A. −
.
B.
.
C.
.
D. − .
100
25
100
16
 π
Câu 103. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
e .
e .
A. 1.
B.

C. e .
D.
2
2
2
mx − 4
Câu 104. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 26.
D. 34.


Câu 105. Phần thực và√phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l

A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 106. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −7.

D. −3.

Câu 107. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √

A. 8.
B. 27.
C. 9.
D. 3 3.
3
2
x
Câu 108. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.

Câu 109. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 110. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8

1
8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 111. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
2

Câu 112. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 5.
C. 4.

D. 3.

Câu 113. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 64cm3 .

D. 27cm3 .
Câu 114. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vơ nghiệm.
C. 1.
D. 3.
Câu 115. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (2; 4; 3).
D. (1; 3; 2).

Câu 116. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 36.
D. 4.
Trang 8/11 Mã đề 1


Câu 117. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 3.
D. V = 4.
Câu 118. Dãy số nào sau đây có giới hạn khác 0?
n+1
1

1
C.
A. .
B. √ .
.
n
n
n
log2 240 log2 15

+ log2 1 bằng
Câu 119. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. 3.
C. −8.

D.

sin n
.
n

D. 4.

Câu 120. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a

2a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 121. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. 1.
C. .
D. −1.
2
Câu 122. √
Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i.
√4
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 5.

Câu 123. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. 2
.
D.
.

a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 124. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!

1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
un
Câu 125. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 126. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
A. log2 a =
log2 a
loga 2
Câu 127. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; 1).

D. (−∞; −1).
q
Câu 128. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =

√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
d = 120◦ .
Câu 129. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B.
.
C. 4a.
D. 3a.
2
Câu 130. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
- - - - - - - - - - HẾT- - - - - - - - - Trang 9/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D


2.
4.

C

6.
8.

D

3.

D

5.

D

7.

D

9. A

B

10. A

11.


12.

B

13. A

C

14. A

15. A

16.

17.

D

18. A

19.

20.

B

21.

22.


B

23. A

24.

25.

C

26.

D
B
C
B

27.

D

28.

B

29.

30.

B


31.

32.

B

33.

D
B
D
C

34.

C

35.

B

36.

C

37.

B


39.

B

38. A
40.
42.

D

41.
43.

B

44.
46.

D

45. A

C
D

48.

C

47. A

49.

C

D

50. A

51. A

52. A

53.

D

55.

D

54.

C

56. A
58.

D

57.


B

59.

B

60.

C

61.

62.

C

63.

B

65. A

64. A
66.
68.

C

C


67.
69.

B
1

C
D


70.

C

71.

B

72.

C

73.

B

74. A

75.


B

76. A

77. A

78.

D

79.

C

80.

B

81.

C

82.

B

83.

C


D

84.

85. A

86.

C

87. A

88.

C

89.

90.

C

91.
D

92.
94.

97.


98.

C

99.

100.

D

C
D

101. A
103.

102. A
104.

D

105.

D
B
D

107.


B

108.

109.

C
B

D
D

C

113.

114.

C

115. A

116.

D

B

111.


112.

118.

D

95. A

B
C

110.

C

93.

96.

106.

B

117.

C

D

119.


120. A

121.

C
B

122.

D

123.

124.

D

125. A

126.

D

127.

B

129.


B

128.
130.

C
D

2

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×