Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (851)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.61 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
Câu 2. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 3. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền ra.
A. 210 triệu.
B. 216 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 4. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.


13
9
23
5
B.
.
C.
.
D. −
.
A. − .
16
100
25
100
Câu 5. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều. D. Bát diện đều.
Câu 6. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
2n − 3
bằng
Câu 7. Tính lim 2
2n + 3n + 1
A. 1.
B. +∞.
C. −∞.

D. 0.
Câu 8. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 9. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

C. 0.

D. 5.

Câu 10. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 7.

Câu 11. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có một.

D. Có vơ số.
Câu 12. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 13. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2

C. un =

1 − 2n
.
5n + n2

D. un =

n2 − 2
.
5n − 3n2

Trang 1/10 Mã đề 1


Câu 14. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.

C. y0 = x + ln x.

D. y0 = ln x − 1.

Câu 15. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
2a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
2

4
3
Câu 16. Cho z là nghiệm của phương trình√ x + x + 1 = 0. Tính P =√z + 2z − z
−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
Câu 17. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 1.
D. 3.
!
5 − 12x
Câu 18. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 19. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.

C. y = log 41 x.

D. y = loga x trong đó a =


3 − 2.

Câu 20. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
A.
.
B.
.
C.
.
D.
.
48
8
24
24

Câu 21. Biểu thức nào sau đây khơng có nghĩa


−3
A. (−1)−1 .
B. 0−1 .
C.
−1.
D. (− 2)0 .
Câu 22. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 23. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 3.

D. 2.

Câu 24. Giá trị của lim (3x − 2x + 1)
x→1
A. 1.
B. 3.

C. +∞.

D. 2.


Câu 25. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.

2

Câu 26.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
!
1
1
1
Câu 27. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5

3
A. .
B. .
C. 2.
D. +∞.
2
2
Trang 2/10 Mã đề 1


Câu 28. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.


Câu 29. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. 3.

C. −3.
D. .
3
3
Câu 30. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.
3a
, hình chiếu vng
Câu 31. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
2a
a 2
A. .
B. .
C.
.
D.
.

4
3
3
3
Câu 32. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A.
.
B. y0 =
.
C. y0 = .
D. y0 =
.
10 ln x
x ln 10
x
x
Câu 33. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 2
a3 3
a3 3

a 3
A.
.
B.
.
C.
.
D.
.
4
12
6
12
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
.
A. 10a .
B. 40a .
C. 20a .
D.
3
d = 300 .
Câu 35. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3
3

a
3
3a
3
C. V =
A. V = 6a3 .
B. V = 3a3 3.
.
D. V =
.
2
2
Câu 36. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C. 18.
D.
.
2
Câu 37. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.


C. Chỉ có (II) đúng.

D. Cả hai đều sai.
Trang 3/10 Mã đề 1


Câu 38. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+1
c+2
c+2
c+3
1
Câu 39. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1

A. xy0 = ey + 1.
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 40. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 41. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 5%.
D. 0, 8%.
Câu 42. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − 2 .
C. − .
e
2e

1
D. − .
e
! x3 −3mx2 +m

1
Câu 43. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m , 0.
Câu 44. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. Khơng tồn tại.

D. 13.

Câu 45. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 46. [12214d] Với giá trị nào của m thì phương trình
A. 0 ≤ m ≤ 1.

1
3|x−2|

= m − 2 có nghiệm

C. 0 < m ≤ 1.


B. 2 ≤ m ≤ 3.

D. 2 < m ≤ 3.

2

Câu 47. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B.
.
C. 3 .
A. √ .
3
2e
e
2 e

D.

1
.
e2

Câu 48. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a


x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 49. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.

C. 6.

D. 4.

Câu 50.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.

12
4


a3 2
C.
.
6


a3 2
D.
.
2

Câu 51. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. .
C. 9.
D. .
2
2
Trang 4/10 Mã đề 1


[ = 60◦ , S O
Câu 52. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD

vng góc
√ Khoảng cách từ A đến (S BC) bằng
√ với mặt đáy và S O = a.


a 57
a 57
2a 57
.
B.
.
C. a 57.
.
A.
D.
17
19
19
x2
Câu 53. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 0.
D. M = e, m = 1.
e
e
Câu 54. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần

lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
5
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 55. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).

C. (I) và (III).

D. (II) và (III).


Câu 56. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −e2 .
C. −2e2 .
D. 2e4 .
Câu 57. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
Câu 58. [2] Tổng các nghiệm của phương trình 3
A. 3.
B. 4.

C. Khối lập phương.

D. Khối 12 mặt đều.

x2 −4x+5

= 9 là
C. 5.

D. 2.

Câu 59. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
Câu 60. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao

cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. 3.
D. .
2
2
q
2
Câu 61. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 4].

Câu 62. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = 2a3 .
B. V = a3 2.
C.
.
D. 2a3 2.
3

Câu 63. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 91cm3 .
D. 48cm3 .
Trang 5/10 Mã đề 1


Câu 64. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
1 − 2n
bằng?
Câu 65. [1] Tính lim
3n + 1
1
2
A. .
B. .
3
3

2
C. − .
3

D. 1.


Câu 66. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
B. 26.
C.
A. 2 13.
.
D. 2.
13
Câu 67. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình chóp.
Câu 68. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 1.

C. 4.

Câu 69. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.

Câu 70. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.

D. Hình lăng trụ.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.
D. 5 mặt.

C. 12.

D. 10.
x+2
Câu 71. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 72. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.

D. y(−2) = −18.
Câu 73. Tính lim
A. 1.

cos n + sin n
n2 + 1
B. +∞.

C. 0.

D. −∞.

Câu 74. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (−1; 0).
D. (0; 1).
Câu 75. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Không thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.

Câu 77. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng

(S BD) bằng



3a
3a 38
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29

Câu 76. [3-1226d] Tìm tham số thực m để phương trình

Trang 6/10 Mã đề 1


Câu 78. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.

C. 24 m.
D. 12 m.
Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 80. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.

x−1
Câu 81. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √

A. 2 2.
B. 2.
C. 6.
D. 2 3.
Câu 82. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01) − 1
3
100.(1, 01)3
120.(1, 12)3
C. m =
triệu.

D. m =
triệu.
3
(1, 12)3 − 1
Câu 83. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
2a3 3
a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 84. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3
a3 3
a3 3
3
.
B.
.
C. a .
D.
.
A.
3
9
3
Câu 85. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n
Câu 86. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.

B. lim qn = 1 với |q| > 1.

1
D. lim k = 0 với k > 1.
n

C. x = 0.

Câu 87. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.

D. x = 2.
D. −1 + 2 sin 2x.

Câu 88. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 1134 m.
D. 6510 m.
Câu 89.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 5.
B. 1.
C. 2.
D. 3.
Trang 7/10 Mã đề 1



!2x−1
!2−x
3
3
Câu 90. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).

D. (−∞; 1].

Câu 91. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

D. 8.

C. 6.

Câu 92. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
Câu 93. Dãy số nào sau đây có giới hạn khác 0?
1

1
A. .
B. √ .
n
n

C.

sin n
.
n

D.

n+1
.
n

Câu 94. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x + .
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
2x + 1
x
1 + 2 + ··· + n
Câu 95. [3-1132d] Cho dãy số (un ) với un =

. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
1
Câu 96. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Câu 97. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 10.
D. ln 12.
Câu 98. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.

C. 10.

Câu 99. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.

B. 10.
C. 12.

D. 30.
D. 27.

Câu 100. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. 2a 2.
C.
.
D. a 2.
4
2
1
Câu 101. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 2.

D. 4.
Câu 102. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Câu 103. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Ba mặt.
C. Một mặt.
7n2 − 2n3 + 1
Câu 104. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
3
3

C. 1.

D. Hai mặt.

D. 0.
Trang 8/10 Mã đề 1


!x
1

Câu 105. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. − log2 3.
C. − log3 2.
1−x

D. 1 − log2 3.

2

Câu 106. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 8.

D. 6.

Câu 107. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
1
Câu 108. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.

C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 109. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (0; −2).
Câu 110. Tính lim
A. 3.

n−1
n2 + 2

B. 2.

C. 1.

D. (2; 2).

D. 0.

Câu 111. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).

Câu 112. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 63.

C. 64.
D. 62.

x2 + 3x + 5
Câu 113. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 0.
C. .
D. 1.
A. − .
4
4
Câu 114. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 4.

Câu 115. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

C. +∞.

B. 0.

D. 24.
un

bằng
vn
D. −∞.

Câu 116. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
2n + 1
Câu 117. Tính giới hạn lim
3n + 2
3
1
A. .
B. .
2
2
Câu 118. [1-c] Giá trị của biểu thức
A. 2.

B. 4.

C.
log7 16
log7 15 − log7


15
30

2
.
3

D. 0.

bằng

C. −2.

D. −4.
Trang 9/10 Mã đề 1


Câu 119. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 120. [3] Cho hàm số f (x) = ln 2017 − ln

x
4035
2016
2017
.
B.
.
C. 2017.
D.
.
A.
2018
2018
2017
Câu 121. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 122. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. −6.
D. 0.
Câu 123. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.

C. 12 cạnh.


D. 10 cạnh.
[ = 60◦ , S A ⊥ (ABCD).
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 2
a3 3
3
.
B. a 3.
C.
.
D.
.
A.
6
4
12

Câu 125. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. (1; 2).

D. [3; 4).
2
2
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 126. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
.
B. T = 2017.
C. T = 2016.
D. T = 1008.
A. T =
2017
Câu 127. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.

B. .
C. .
D. .
4
2
8
x+3
Câu 128. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 1.
C. 2.
D. Vô số.
x−2
Câu 129. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. −3.
D. − .
3
3
2
Câu 130. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.

D. −2 ≤ m ≤ 2.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.

2. A

5. A

6. A
D

7.

8.

9. A
11.

D

4.


C

3.

B

10. A
12. A

B
C

13.

14.

B

16.

D

17. A

18.

D

19. A


20.

D

15.

21.

B

B

22.

D

24.

23. A
25.

B

B

26. A
28.

C


27.
29.

D

31.

C

D

30.

B

32.

B

33.

D

34.

C

35.


D

36.

C
C

37.

C

38.

39.

C

40.

41.

42.

B

43. A

44.

45.


D

46.

47.

D

48.

49.
51.
55.

B
D
B

52.

B
C
B

57. A
59.

C


50. A

C

53.

D

C

D

54.

B

56.

B

58.

B

60.

D

61.


B

62.

D

63.

B

64.

D

65.
67.

66.

C
B

68.
1

C
B


69. A


70. A

71. A

72.
C

73.
75.

D
C

74.
76.

B

D

77.

D

78.

B

79.


D

80.

B

81.

D

82. A

C

83.
85.

84. A
86. A

B
D

87.
89.

C

90.


91.

C

92.

93.

D

96.

97. A

98.

99. A

100.
B

102.

103. A
105.

B

B

C
B

108.

C
B

113. A

C

110.

D

112.

D

114.

B

116. A

B

117.


118.

C

119. A

D

120. A

121.

D

122.

123.

D

124.

B
C

126.

125. A
127.


C

106. A
D

109.

115.

D

104. A

107.
111.

C

94. A

95. A

101.

D

88.

D


128. A

B

129. A

130.

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×