Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (645)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.18 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 15, 36.
D. 3, 55.
Câu 2. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 27.

D. 12.

Câu 3. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. 0.
D. −3.
Câu 4. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.



C. Khối lập phương.

D. Khối 12 mặt đều.

Câu 5. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

3a
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt √
phẳng (S BD) bằng
a
2a
a
a 2
A. .
B.
.
C. .
D.
.
4
3

3
3
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3

a 3
a 2
a 3
.
B.
.
C. a3 3.
.
A.
D.
2
2
4

Câu 6. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 8. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.

.
B. 12.
C. 27.
D. 18.
2

Câu 9. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 64.
D. 62.
Câu 10. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. Không tồn tại.
Câu 11. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − .
2e
e
Câu 12. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.


D. −7.

D. −

1
.
e2

D. {4; 3}.

Câu 13. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 1/11 Mã đề 1


[ = 60◦ , S O
Câu 14. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng

a 57
a 57
2a 57
A.
.
B.

.
C.
.
D. a 57.
19
17
19
Câu 15. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. √
Thể tích khối chóp S .ABC√là


3
3
a 3
a 3
a3 6
2a3 6
A.
.
B.

.
C.
.
D.
.
4
2
12
9
Câu 16. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 17. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.

C. D = R \ {1}.

D. D = R \ {0}.

Câu 18. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 19.
các khẳng định sau, khẳng định nào sai?
Z Trong

u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
4
12
12
6
Câu 21. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 8.
D. 6.
x2 − 3x + 3
Câu 22. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 3.
C. x = 0.
D. x = 2.
Câu 23. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 24. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 25. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).

B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
d = 120◦ .
Câu 26. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 3a.
C. 2a.
D. 4a.
2
Câu 27. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
1
n+1
A.
.
B. .
C. √ .
D.
.
n
n
n
n
Trang 2/11 Mã đề 1



x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
Câu 28. [4-1213d] Cho hai hàm số y =

Câu 29. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −4.
C. −2.
D. −7.
A.
27
Câu 30. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 12.

D. 20.
Câu 31. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


a3 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 .
2
6
3
!2x−1
!2−x
3
3


Câu 32. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).

B. (−∞; 1].
C. [3; +∞).
D. [1; +∞).
Câu 33. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).
2n + 1
Câu 34. Tìm giới hạn lim
n+1
A. 1.
B. 0.
C. 3.
x2 − 12x + 35
Câu 35. Tính lim
x→5
25 − 5x
2
2
A. .
B. − .
C. −∞.
5
5
Câu 36. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −e2 .
C. −2e2 .
2n + 1
Câu 37. Tính giới hạn lim

3n + 2
2
1
3
A. .
B. .
C. .
3
2
2
cos n + sin n
Câu 38. Tính lim
n2 + 1
A. 1.
B. 0.
C. −∞.

D. (−∞; 6, 5).

D. 2.

D. +∞.
D. 2e4 .

D. 0.

D. +∞.

Câu 39. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).

B. (−∞; 1).
C. (−∞; −1).

D. (−1; 1).

Câu 40. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

D. Khối bát diện đều.

C. Khối tứ diện đều.

Câu 41. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
3
2
Câu 42. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.



D. −3 + 4 2.

Câu 43. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.

D. 4 mặt.
Trang 3/11 Mã đề 1


Câu 44. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 45. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 2e.
C. .
e

Câu 46. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. −3.
B. .
C. 3.
3
x2 − 9

Câu 47. Tính lim
x→3 x − 3
A. 3.
B. −3.
C. +∞.

D. 3.
1
D. − .
3

D. 6.

Câu 48. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
Câu 49. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Thập nhị diện đều.

D. Bát diện đều.

Câu 50. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .

e
e
0
Câu 51. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4e + 2
4 − 2e
4 − 2e
Câu 52. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a


x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 53. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m > .
D. m ≥ .
A. m ≤ .
4
4
4
4
Câu 54. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.

C. m = −1.
D. m = −3.
Câu 55. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.
B.
.
C. .
D. 1.
2
2
Câu 56. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
p
ln x
1
Câu 57. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .

C. .
D. .
3
3
9
9
Câu 58. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 59.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.
.
B. .
C.
.
2
4
4


3
D.
.

12
Trang 4/11 Mã đề 1


Câu 60. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.

D. Hai mặt.

Câu 61.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =

B.
Z
D.


f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 62. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3
A. .
B. .
C. 1.
D.
.
2
2
2
Câu 63. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

D. |z| = 17.
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
Câu 64. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 65. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(4; 8).
D. A(−4; 8).
1
Câu 66. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3, m = 4.
Câu 67. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2.
B. P = 2i.
C. P =
.
D. P =
.

2
2
Câu 68. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = (−2; 1).
2

D. D = R \ {1; 2}.

Câu 69. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



5a3 3
4a3 3
2a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
3

3
3
2
Câu 70. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 0, 8.
D. 7, 2.
Câu 71. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 72. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.

C. 1.


D. 3.

Câu 73. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 10.
D. ln 12.
Trang 5/11 Mã đề 1


Câu 74. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.

Câu 75. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.

4
3
12
Câu 76. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 16.
D. 8 3.
Câu 77. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.

C. 8.

Câu 78. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {3; 4}.

D. 12.
D. {5; 3}.

Câu 79. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].

C. [−3; 1].
D. [1; +∞).
Câu 80. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. 2a 2.
.
C.
.
D. a 2.
B.
4
2
Câu 81. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
sai.

C. Câu (II) sai.

log 2x
Câu 82. [3-1229d] Đạo hàm của hàm số y =


x2
1
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
2x ln 10
x ln 10
2x3 ln 10
Câu 83. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. −6.

D. Câu (III) sai.

D. y0 =

1 − 2 log 2x
.
x3

2

D. 5.


Câu 84. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
[ = 60◦ , S A ⊥ (ABCD).
Câu 85. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
4
6
12
Trang 6/11 Mã đề 1



Câu 86. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
A. 68.
B. 34.
C. 5.
D.
17
1
Câu 87. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 88. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m ≥ 0.

D. m > −1.
 π π
Câu 89. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2

A. 7.
B. −1.
C. 1.
D. 3.
1
Câu 90. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
n−1
Câu 91. Tính lim 2
n +2
A. 2.
B. 3.
C. 1.
D. 0.

Câu 92. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 108.
C. 4.
D. 6.
Câu 93. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
1 − xy

= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 94. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 95. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. 13.
D. log2 2020.
Câu 96. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.

C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
d = 60◦ . Đường chéo
Câu 97. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3

4a3 6
a
6
2a3 6
.
B.
.
C. a3 6.
D.
.
A.
3
3
3
Câu 98. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) = ln 10.
C. f 0 (0) =

.
D. f 0 (0) = 1.
ln 10
 π
Câu 99. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π
A.
e .
B.
e .
C. 1.
D. e 3 .
2
2
2
Câu 100.
√ [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 3.
C. 2.
D. 1.
Câu 101. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 7/11 Mã đề 1



(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 3.

C. 2.

D. 1.

Câu 102. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 2.
C. 0.
D. 1.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 103. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 2.
C. 6.

D. 2 3.
d = 30◦ , biết S BC là tam giác đều
Câu 104. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
9
13
26
log 2x
Câu 105. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 log 2x

1 − 2 ln 2x
.
C. y0 =
.
D. y0 = 3
.
A. y0 =
.
B. y0 = 3
3
3
x
x ln 10
2x ln 10
2x ln 10
Câu 106. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 13.
D. 0.
!
x+1
Câu 107. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
.
B.

.
C.
.
D. 2017.
A.
2018
2017
2018
Câu 108. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.
C. 30.
D. 20.
2
2n − 1
Câu 109. Tính lim 6
3n + n4
2
A. 1.
B. 0.
C. .
D. 2.
3
Câu 110. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 111. Khối đa diện đều loại {3; 5} có số mặt

A. 8.
B. 30.

C. 20.

D. 12.

Câu 112. Dãy số nào có giới hạn bằng 0?
n3 − 3n
.
A. un = n2 − 4n.
B. un =
n+1

!n
6
C. un =
.
5

!n
−2
D. un =
.
3

Câu 113. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền

ra.
A. 216 triệu.
B. 220 triệu.
C. 210 triệu.
D. 212 triệu.
Trang 8/11 Mã đề 1


Câu 114. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 1.

D. 0.

Câu 115.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
4
1
A.
.
B.
.
e
3

!n
5

D.
.
3

!n
5
C. − .
3

Câu 116. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
3

Câu 117. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.
D. e2 .
tan x + m
nghịch biến trên khoảng
Câu 118. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao

Câu 119. [4] Xét hàm số f (t) = t
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 1.
D. 2.
Câu 120. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. .
D. 6.
A. 9.
B. .
2
2
2mx + 1
1
Câu 121. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. 0.
D. −5.
Câu 122. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 4.

B. 11.
C. 10.
D. 12.
Câu 123. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.

D. 9 mặt.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m ≤ 0.

Câu 124. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m > 4.
1
Câu 125. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.

C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.

Câu 126. [1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.

B. m < 0.

1 − n2
Câu 127. [1] Tính lim 2
bằng?
2n + 1
1
A. .
B. 0.
2

1
C. − .
2

D.

1
.

3

Câu 128. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; −3; −3).
Trang 9/11 Mã đề 1


!4x
!2−x
2
3
Câu 129. Tập các số x thỏa mãn


3 #
2
#
"
!
2
2
2
B. −∞; .
C. − ; +∞ .
A. −∞; .
5

3
3

!
2
D.
; +∞ .
5

Câu 130. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.

D. 3.

C. 2.

"

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

D

3.
5. A
7.

D
B

13. A
15.
17.

B

4.

B

6.

B

8.

B

9.
11.


2.

D

10.

C

12.

C

14.

C

16. A

C
B

19. A

18.

C

20.

C


21.

C

22. A

23.

C

24.

25. A

C

26. A

27.

D

28. A
30.

D

31. A


32.

D

33. A

34.

D

35. A

36.

B

37. A

38.

B

29.

C

39.

D


40. A

41.

D

42.

D

45.

D

47.

D

44. A
46.

B
D

48.
50.

49.

B


51.

52.

D

C
B

53. A

54.

B

55. A

56.

B

57.

C

59.

C


58.
60.

C
B

62.

61.
C

64. A
66.
68.

D

B

63.

C

65.

C

67. A
69.


B
1

D


71.

70. A

D

72.

B

73.

B

74.

B

75.

B

76.
78.


79.

B

80.
82.

77. A

C

81. A

C
B

83.

84. A
D

87. A

88.

D

89.


C

95. A

96. A

97.
B

B
B

C

101.

102.

C

103.

104.

C

105.

106.


D

D
B

107. A

108. A

109.
C

B
C

111.

112.

D

113.

114.

D

115.

116.


D

117. A

120.

C

99.

100.

118.

D

93. A

94. A

110.

C

91.

B

92.


98.

B

85. A

86.
90.

C

D
B

119.

C
B

D

121.
D

122.

C
D


123.

124.

C

125.

126.

C

127.

C

129.

C

128.

B

130.

B

2


B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×