Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (570)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.53 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1


Câu 1. Xác
định
phần
ảo
của
số
phức
z
=
(
2 + 3i)2


A. −6 2.
B. 6 2.
C. −7.
Câu 2. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .


B. − .
C. − 2 .
e
2e
e

D. 7.

D. −e.

Câu 3. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 9.

C. 5.

Câu 4. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 3.
C. 1.

D. 0.
D. 2.

Câu 5. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.

B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 6. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey + 1.
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 7. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 1134 m.
D. 6510 m.
Câu 8. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C.
.
D. a.
A. .

3
2
2
Câu 9. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 10. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
d = 30◦ , biết S BC là tam giác đều
Câu 11. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.

13
26
16
9
!2x−1
!2−x
3
3


Câu 12. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (−∞; 1].
C. (+∞; −∞).
D. [1; +∞).
Câu 13. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim k = 0 với k > 1.
n

B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n

Câu 14. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.

B. 4.

C. 5.

D. 8.
Trang 1/10 Mã đề 1


Câu 15. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 12.
D. 27.
A. 18.
B.
2
Câu 16. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 3.
D. T = e + .
A. T = e + 1.
B. T = 4 + .
e
e
! x3 −3mx2 +m
1
Câu 17. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =

nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m , 0.
D. m = 0.
Câu 18. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

C. 9 cạnh.

D. 10 cạnh.

Câu 19. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).

D. (−∞; 1).

Câu 20.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).


f (x)dx = F(x) + C.

D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
x2 − 5x + 6
Câu 21. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.

C. 1.

D. 0.
2

2

sin x
Câu 22.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 23. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.

C. 2.

D. 1.

Câu 24. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 2.

D. 1.

Câu 25. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
Câu 26. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 2.

B. 4.

3

Z

6
3x + 1


. Tính

1

f (x)dx.
0

C. 6.

D. −1.

Câu 27. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a3 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6

6
36
18


x
+
3
+
6−x
Câu 28.
số
y
=
√ Tìm giá trị lớn nhất của hàm


A. 3 2.
B. 2 + 3.
C. 3.
D. 2 3.
Câu 29. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. [6, 5; +∞).

D. (4; +∞).
Trang 2/10 Mã đề 1



Câu 30. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
.
B. √
.
C. √
.
D. 2
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 32. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2

a 2
A. a 3.
B.
.
C. a 2.
D.
.
3
2
Câu 33. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
D.
A. 2a 2.
.
C. a 2.
.
4
2
√3
4
Câu 34. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5

2
7
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
x+1
Câu 35. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 1.
C. 3.
D. .
4
3
Câu 36. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
b a2 + c2
abc b2 + c2

a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 38. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
3
x −1
Câu 39. Tính lim
x→1 x − 1
A. +∞.
B. 3.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e


C. S = 32.

D. S = 24.

C. −∞.

D. 0.
2

x
Câu 40. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 0.
e
e

Câu 41. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 63.
D. 64.
2mx + 1
1
Câu 42. Giá trị lớn nhất của hàm số y =

trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. 1.
C. −2.
D. −5.
Câu 43. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

Trang 3/10 Mã đề 1


C. lim

x→+∞

f (x) a
= .
g(x) b

D. lim [ f (x) + g(x)] = a + b.
x→+∞


Câu 44. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
D. .
A. 3.
B. 1.
C. .
2
2
Câu 45. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 46. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là

A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
1
Câu 47. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 48.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
Câu 49. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6

B.
.
C. a 6.
D. 2a 6.
A. a 3.
2
Câu 50. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 8 3.
C. 7 3.
D. 8 2.
d = 60◦ . Đường chéo
Câu 51. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
3
C.
A.
.

B. a 6.
.
D.
.
3
3
3
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 52. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vơ số.
q
2
Câu 53. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 54. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e

A. m =
.
B. m =
.
C. m =
.
4 − 2e
4 − 2e
4e + 2

1 + 2e
.
4e + 2

D. m =

Câu 55. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 56. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
Trang 4/10 Mã đề 1



Câu 57. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 58. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
1
Câu 59. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.

B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 60. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.
C. 8.
D. 30.
1 3
Câu 61. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.

Câu 62. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


3a
3a 38
3a 58
a 38
.
B.
.
C.
.

D.
.
A.
29
29
29
29
Câu 63. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. 1.
p
ln x
1
Câu 64. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
B. .
C. .
D. .
A. .
3
9
3

9
Câu 65. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 66. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
Câu 67. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. m ≤ 3.
Câu 68. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 69. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17

B. 68.
C.
.
D. 34.
A. 5.
17
Trang 5/10 Mã đề 1


Câu 70. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B. 7.
C. 5.
D.
.
A. .
2
2
Câu 71. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 14.
D. ln 4.
Câu 73. [1] Phương trình log3 (1 − x) = 2 có nghiệm

A. x = −2.
B. x = −8.
C. x = −5.

D. x = 0.

Câu 74. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m < .
D. m ≤ .
A. m ≥ .
4
4
4
4
Câu 75. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 5}.
Câu 76. Tính lim
A. 3.

n−1
n2 + 2

B. 1.


C. 2.

D. {5; 3}.

D. 0.

x

9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 77. [2-c] Cho hàm số f (x) = x
9 +3
1
B. −1.
C. 1.
D. 2.
A. .
2
Câu 78. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

C. 10.

D. 12.

Câu 79.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z

A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 80. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
Câu 81. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.

D. Số cạnh của khối chóp bằng 2n.
Câu 82. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 46cm3 .
D. 27cm3 .
Câu 83. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n

B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).
Trang 6/10 Mã đề 1


Câu 84.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.

C.
.
2
4
12
Câu 85. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.

D.

3
.
4

Câu 86.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
Z x
Z
xα+1
C.
xα dx =
+ C, C là hằng số.

D.
dx = x + C, C là hằng số.
α+1
Câu 87. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.
=
=
.
B.
=
=
.
2
3

4
2
2
2
x y−2 z−3
x y z−1
.
D. =
=
.
C. = =
1 1
1
2
3
−1
Z 2
ln(x + 1)
Câu 88. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 0.
C. 1.
D. −3.
Câu 89. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.


C. 4.

Câu 90. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 0, 8.

D. 3.
D. 72.

Câu 91. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và


√ (A C D) bằng

2a 3
a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
3
2

!
!
!
x
4
1
2
2016
Câu 92. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2017.
D. T = 2016.
2017
Câu 93. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13

A. 26.
B.
.
C. 2.
D. 2 13.
13
Câu 94. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 95. [1] Tính lim
A. 1.

1 − 2n
bằng?
3n + 1
2
B. .
3

2
C. − .
3

D.

1
.
3

Trang 7/10 Mã đề 1


Câu 96. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+3
c+2
c+2
c+1
Câu 97. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 48cm3 .
D. 64cm3 .
Câu 98. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5

A. m ≤ 0.
B. − < m < 0.
C. m > − .
D. m ≥ 0.
4
4
log 2x
Câu 99. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
Câu 100. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 101. [2] Phương trình log x 4 log2
12x − 8
A. Vơ nghiệm.
B. 1.
C. 3.
D. 2.
2n − 3
bằng
Câu 102. Tính lim 2
2n + 3n + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 103. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.


B. 3.

C. 1.

D. 4.

Câu 104. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.

Câu 105. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =

.
3
6
6
2
π
Câu 106. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
Câu 107. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
A. un =
.
B.
u
=
.
n
n2
5n − 3n2

C. un =


1 − 2n
.
5n + n2

D. un =

n2 + n + 1
.
(n + 1)2
Trang 8/10 Mã đề 1


Câu 108. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
B. +∞.

A. 1.

C. 0.

un
bằng
vn
D. −∞.

Câu 109. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
6
3
2
Câu 110. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 3.

D. 1.

Câu 111. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.
Câu 112. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình

nhất?
A. 4.

B. 1.

C. 3.

D. Khơng tồn tại.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

1
Câu 113. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.
√3
Câu 114. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. −3.

C. − .
D. 3.
3
3
Câu 115. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.
C. 30.
D. 20.
Câu 116. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Bốn cạnh.

D. Hai cạnh.

Câu 117. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


3
3
3
a
a 3
a 3
.
B.
.

C.
.
D. a3 .
A.
3
3
9
Câu 118. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vuông góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 2
a 3
A.
.
B. a3 3.
C.
.

D.
.
4
2
2
1
Câu 120. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 2.
C. 1.
D. −1.
log 2x
Câu 121. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10

2x ln 10
x ln 10
x3
Trang 9/10 Mã đề 1


x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
1
Câu 123. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 4.
D. 1.
Câu 122. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 124. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?

A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
x+2
bằng?
Câu 125. Tính lim
x→2
x
A. 3.
B. 2.
C. 0.
D. 1.
Câu 126. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
1 + 2 + ··· + n
Câu 127. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
Câu 128. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng

1
ab
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).

C. (−∞; 2).
D. (2; +∞).
Z 1
Câu 130. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

Câu 129. [4-1213d] Cho hai hàm số y =

0

A. 0.

B.

1
.
4

C. 1.

D.

1
.
2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4. A

5.

D

6.

7.

D

8.

9.


D
D

12.
B

14. A

15. A

16.
D

17.

C
D

18.

C

19.
21.

C

10. A

B


11. A
13.

B

C

20.

B

22.

B

23.

C

24.

B

25.

C

26.


B

27.

D

28. A

29. A
31.

B
D

33.

30.

D

32.

D

34.

35. A

36.


37. A

38.

39.

C
D

42. A

43.

44.

C

45.

D

46.

47.

D

48.

49.


D
B
D

50. A

C

52. A

B

53. A

54.

55. A

56.

57.

C

58.

59.

C


60.

61.

D

40.

B

41. A

51.

C

D

C
B
C
B

62.

63. A

64.


65. A

66.

67. A

68. A
1

D
B
D


69.

D

71.
73.

70. A

C

72.

B

C


74.

D

75.

C

76.

D

77.

C

78.

D

79.

C

80.

81.

D


82.

83.

D

84.

85.

B

D
B
C

86.

87.

C

88.

89.

C

90.


91.

B

92. A

93.

B

94. A
C

95.

B

96.

97.

D

98.

99.

D


100.

D
B

B
C
D

101.

B

102.

C

103.

B

104.

C

106.

C

108.


C

105. A
C

107.
109.

B

110. A

111.
113.

D

112.

B

B

114. A

115.

D


116. A
118.

117. A
119.

D

121.

120. A
122.

C

123.

D

D

B

124.

D

125.

B


126.

127.

B

128.

D

129.

B

130.

D

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×