Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (942)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.41 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 2. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).
Câu 3.Z Các khẳng
! định nào sau đây là sai?
0

f (x)dx = f (x).

A.
Z
C.

Z

f (x)dx = F(x) +C ⇒



B.
Z

f (u)dx = F(u) +C. D.

Z

D. (−∞; +∞).
Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 4. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 84cm3 .
D. 48cm3 .
2

Câu 5. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 8.


D. 6.

Câu 6. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log π4 x.
A. y = log 41 x.
C. y = log √2 x.

D. y = loga x trong đó a =


3 − 2.

Câu 7. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai quyển
sách cùng một mơn nằm cạnh nhau là
1
9
2
1
B.
.
C.
.
D. .
A. .
5
10
10
5
!
1

1
1
Câu 8. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. 1.
C. .
D. 2.
2
Câu 9. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 10. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
2x + 1
Câu 11. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .

C. 2.
D. 1.
2
log2 240 log2 15
Câu 12. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 1.
C. −8.
D. 3.
Trang 1/10 Mã đề 1


Câu 13. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 14. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. −5.

D. Không tồn tại.

Câu 15. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.

B. ln 10.
C. ln 12.
D. ln 4.
Câu 16. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x−2 y+2 z−3
=
=
.
B. = =
.
A.
2
2
2
1 1

1
x y−2 z−3
x−2 y−2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
3
4
log(mx)
= 2 có nghiệm thực duy nhất
Câu 17. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0.
1 − 2n
Câu 18. [1] Tính lim
bằng?
3n + 1
1
2

2
A. .
B. .
C. 1.
D. − .
3
3
3
x+2
Câu 19. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 20. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
Câu 21. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + 1.

D. T = e + .
e
e
x−3 x−2
x−3
x−2
Câu 22. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 23.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
k f (x)dx = f

f (x)dx, k ∈ R, k , 0.
Câu 24. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
5
8
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 25. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 1.

D. 2.
Trang 2/10 Mã đề 1


Câu 26.! Dãy số nào sau đây có giới

!n hạn là 0?
n
5
4
A.
.
B.
.
3
e

!n
5
C. − .
3

!n
1
D.
.
3

Câu 27. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6

a 6
B.
A. a 6.
.
C.
.
D.
.
2
3
6
Câu 28. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
Câu 30.
A. 81.
Câu 31.
A. 3.

D. 4 mặt.
8
[3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
B. 96.

C. 82.
D. 64.


Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x

B. 3 2.
C. 2 + 3.
D. 2 3.

Câu 32. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. 13.
x − 12x + 35
25 − 5x
B. −∞.

D. Không tồn tại.

2

Câu 33. Tính lim
x→5

A. +∞.

C.

2

.
5

2
D. − .
5

1
Câu 34. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 35. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có hai.
D. Có một.
x2 − 5x + 6
Câu 36. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.

C. 5.

D. −1.


Câu 37. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
Câu 38. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.

C. +∞.

D. 3.

Câu 39. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a = loga 2.
B. log2 a =
log2 a
loga 2
π
Câu 40. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2 3.
C. T = 4.
D. T = 2.
Câu 41. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2

C. un =

n2 − 3n
.
n2

D. un =

n2 − 2
.
5n − 3n2

Trang 3/10 Mã đề 1


Câu 42. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. 0.
2n + 1
Câu 43. Tính giới hạn lim
3n + 2
2
A. .
B. 0.
3

C. +∞.

C.

un
bằng
vn
D. −∞.

3
.
2

D.


1
.
2

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 44. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3

a3 3
a3 3
a
2
A.
.
B.
.
C. 2a2 2.
D.
.
24
12
24
Câu 45. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.

D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 46. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 3.
D. 0, 4.
Câu 47. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

β.
=
a

0 0 0 0
0
Câu 48.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
.
B.
.
C.
.
D.

.
A.
7
2
3
2
Câu 49. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.

A. aαβ = (aα )β .

B. aα+β = aα .aβ .

C. aα bα = (ab)α .

D.

Câu 50. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



5a3 3
2a3 3
4a3 3
a3 3

A.
.
B.
.
C.
.
D.
.
2
3
3
3
12 + 22 + · · · + n2
Câu 51. [3-1133d] Tính lim
n3
2
1
A. +∞.
B. .
C. .
D. 0.
3
3
Câu 52. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.
C. 0.
D. 7.
2

x
Câu 53. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Câu 54. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 55. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.

B. f 0 (0) = 10.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = ln 10.
Trang 4/10 Mã đề 1



Câu 56. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −4.
C.
.
D. −2.
27
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a
3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3
cos n + sin n
Câu 58. Tính lim
n2 + 1
A. 0.
B. +∞.
C. 1.
D. −∞.
2


Câu 59. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
C. 3 .
A. √ .
B. 2 .
e
2e
2 e
Câu 60. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.

C. 4.

D.

2
.
e3

D. 6.

Câu 61. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .

C. −e.
D. − .
e
e
2e
Câu 62. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 63. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 64. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
[ = 60◦ , S O
Câu 65. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng

a 57

2a 57
a 57
D.
A.
.
B.
.
C. a 57.
.
17
19
19
Câu 66. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −4.
D. −2.
Câu 67. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
2
2
2


!
1
D. −∞; − .
2

Câu 68. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m > −1.
D. m ≥ 0.
1
Câu 69. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 70.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
.
B.

.
C.
.
A.
4
12
2
Câu 71. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.

D.

3
.
4

D. Khối 12 mặt đều.
Trang 5/10 Mã đề 1


Câu 72. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

2a3 6
a3 3
a3 6

a3 3
A.
.
B.
.
C.
.
D.
.
9
4
12
2
d = 60◦ . Đường chéo
Câu 73. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
.

B.
.
C. a 6.
.
A.
D.
3
3
3
Câu 74. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√hợp với đáy một góc 30
√. Thể tích khối chóp S .ABCD
√ là
3
3
3
3

8a 3
8a 3
a 3
4a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 76. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.
D. 0.
Câu 77. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 78. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Khơng có câu nào C. Câu (III) sai.
sai.
Câu 79. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.

D. Câu (II) sai.

D. 5 mặt.
[ = 60◦ , S A ⊥ (ABCD).
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3
3

a
a 2
2
a 3
.
B.
.
C. a3 3.

D.
.
A.
6
4
12
Câu 81. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 2e.
C. 3.
D. .
e
Câu 82. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H

(ABCD),
S
A
=
a
5. Thể tích khối chóp S .ABCD là


3
3
2a 3

2a
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3


4n2 + 1 − n + 2
Câu 83. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2
Trang 6/10 Mã đề 1



Câu 84. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
!2x−1
!2−x
3
3
Câu 85. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (+∞; −∞).
D. (−∞; 1].
Câu 86. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
abc b2 + c2
a b2 + c2
b a2 + c2
c a2 + b2
.

B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 87. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z

D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 88. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.

C. 10.
D. 12.
1
Câu 89. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
Câu 90. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 13.
C. log2 2020.
D. 2020.

Câu 91. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 92. Tính lim
A. 0.


2n2 − 1
3n6 + n4
B.

2
.
3

C. 2.

D. 1.

Câu 93.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 2.
D. 1.
Câu 94. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a
15
a3 5
a3 6
3

A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 95. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Trang 7/10 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).
Câu 96. [4-1212d] Cho hai hàm số y =

Câu 97. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.

C.
.
D.
.
A.
6
36
12
24

Câu 98. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
C. 2; .
D. [3; 4).
A. (1; 2).
B.
2
2
Câu 99. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).
C. D = R \ {0}.
D. D = R \ {1}.
log 2x
Câu 100. [3-1229d] Đạo hàm của hàm số y =


x2
1 − 4 ln 2x
1 − 2 log 2x
1
1 − 2 ln 2x
.
B. y0 =
.
C. y0 =
.
.
D. y0 = 3
A. y0 = 3
3
3
x ln 10
2x ln 10
x
2x ln 10
1
Câu 101. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 102. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.

D. Thập nhị diện đều.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 103. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017

Câu 104.
Xác
định
phần
ảo
của

số
phức
z
=
(
2 + 3i)2


A. 6 2.
B. −7.
C. 7.
D. −6 2.
Câu 105. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
2
8
4
a
1
Câu 106. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 4.

C. 2.
D. 1.

Câu 107. Thể tích của khối lập phương có cạnh bằng a 2



2a3 2
3
3
3
A. V = a 2.
B. V = 2a .
C. 2a 2.
D.
.
3
log7 16
Câu 108. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 2.
B. −2.
C. −4.
D. 4.
Câu 109. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc

với
đáy,
S
C
=
a

√3. Thể tích khối chóp S .ABCD là
3
3
a 3
a 3
a3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Trang 8/10 Mã đề 1


Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là

3
3
3

a 3
a 3
a 2
.
B.
.
C. a3 3.
D.
.
A.
2
4
2
Câu 111. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối tứ diện đều.



x = 1 + 3t




Câu 112. [1232h] Trong không gian Oxyz, cho đường thẳng d : 

y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
−1
+
2t

x
=
−1
+
2t
x = 1 + 3t
















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .

















z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
Câu 113. Tính lim
x→2
A. 2.

x+2
bằng?
x
B. 1.

C. 0.
D. 3.



Câu 114. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt l √

3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
A. Phần thực là √2, phần ảo là 1 − √
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 115. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.

D. −1 + 2 sin 2x.

Câu 116. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
A.
.
B. − .
C.
.
D. −
.

25
16
100
100
Câu 117. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√

3
a 5
a 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5
Câu 118. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −1.
C. m = 0.

D. m = −2.
!4x
!2−x
3
2
Câu 119. Tập các số x thỏa mãn


2
#
" 3 !
"
!
#
2
2
2
2
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
D. −∞; .
5
5
3
3
Câu 120. Dãy số nào sau đây có giới hạn khác 0?
sin n
1

A.
.
B. .
n
n

C.

n+1
.
n

1
D. √ .
n

Câu 121. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


a3 3
a 2
a3 3
a3 3
.
B.
.
C.

.
D.
.
A.
4
12
6
12
2

Câu 122. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 5.
C. 2.

D. 3.
Trang 9/10 Mã đề 1


3

Câu 123. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e.
D. e3 .
1 − xy
Câu 124. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y

nhất Pmin của P√ = x + y.



9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
Câu 125. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
A. |z| = 17.
Câu 126. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
4a 3
2a 3
a3
a
.
B.
.
C.
.
D.
.
A.
6
3

3
3
Câu 128. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
B. 1.
C. .
D.
.
A. .
2
2
2
Câu 129. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m , 0.
D. m > 0.
2
1−n
bằng?
Câu 130. [1] Tính lim 2
2n + 1
1
1
1
A. .
B. 0.
C. .

D. − .
2
3
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
5.

2.

B

4.

C
B

D
B
C

6.


7.

C

8.

9.

C

10.

C

11.

C

12.

C

D

13.

16.

17. A


18.
B

21. A
23.

D

14.

15. A
19.

B

C

B
D

20.

C

22.

C

24.


D
D

25.

D

26.

27.

D

28.

B

31.

B

30. A
32.

B

33.

34. A


35. A

36.

D

37.

38. A

B

39.

40.
42.

C

41.

C

C
B

43. A

B


44.

D

45.

C

46.

C

47.

D

48.

C

49.

D

50. A
52.

51.
B


53.

54.

D

55.

56.

D

57.

C
B
D
C

58. A

59.

60. A

61.

62. A


63. A

64. A

65.

B

67.

B

66.
68.

D

69.

C
1

B
D

D


71.


70. A
72.

C

73.

74.

C

75.

76.

D

D
C
B
C

77.

78.

B

79.


80.

B

81.

C

83.

C

82.

C
D

84.

85.

C

86.

B

B
C


87.

88.

B

89.

90.

B

91.

C

93.

C

95.

C

97.

C

92. A
94.


D

96.
98.

C
B

99. A
101.

100. A
102.

D

105.

106. A

107.

108.

D

D

117.


118.

D

119.
123.

D

D
B
C
D
B

125.

126. A
130.

C

121.

C

122. A

128.


D

115.

116.

124.

C

113. A
C

120.

D

111.

B

114.

C

109.

C


110.

D

103.

104. A

112.

B

127.
B

129.
D

2

C
B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×