TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −12.
D. −9.
x−1
Câu 2. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
√
A. 6.
B. 2 3.
C. 2.
D. 2 2.
Câu 3. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; +∞).
Câu 4. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng
ab
ab
1
1
.
B. 2
.
C. √
.
D. √
.
A. √
2
2
2
2
2
2
a +b
2 a +b
a +b
a + b2
Câu 5. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 6. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.
D. Bốn mặt.
x−3 x−2 x−1
x
Câu 7. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. (−∞; 2).
D. [2; +∞).
Câu 8. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng√cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
.
B. 2a 2.
.
D. a 2.
A.
C.
2
4
x
x
Câu 9. [2] Tổng các nghiệm của phương trình 9 − 12.3 + 27 = 0 là
A. 10.
B. 3.
C. 27.
D. 12.
Câu 10. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 11. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 3.
D. 1.
1 − 2n
Câu 12. [1] Tính lim
bằng?
3n + 1
1
2
2
A. 1.
B. .
C. − .
D. .
3
3
3
Câu 13. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
Trang 1/10 Mã đề 1
Câu 14. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.
Câu 15. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 10.
C. f 0 (0) = ln 10.
D. f 0 (0) = 1.
ln 10
n−1
Câu 16. Tính lim 2
n +2
A. 2.
B. 1.
C. 0.
D. 3.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 17. [2] Phương trình log x 4 log2
12x − 8
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
x+3
Câu 18. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 19. [4-1244d] Trong tất cả các số phức z = a + bi,
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
.
B. −
.
C.
A.
100
100
x+2
Câu 20. Tính lim
bằng?
x→2
x
A. 3.
B. 0.
C.
a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
9
.
25
D. −
5
.
16
2.
D. 1.
Câu 21. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 22. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
3
3
3
3
a
a
3
a
.
C.
.
D.
.
A. a3 .
B.
3
3
9
Câu 23. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
x2
Câu 24. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = 0.
D. M = e, m = .
e
e
Câu 25. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 26. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
x+2
Câu 27. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Trang 2/10 Mã đề 1
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 6
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
24
48
16
48
Câu 29. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 91cm3 .
D. 64cm3 .
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
Câu 31. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 10.
C. 2.
D. 2.
Câu 32.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
C.
Câu 33. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
q
Câu 34. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 35. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 11.
C. 10.
D. 4.
Câu 36. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≤ .
D. m ≥ .
4
4
4
4
2n − 3
Câu 37. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. +∞.
D. 0.
Câu 38. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
Câu 39. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
D. Khối 12 mặt đều.
C. Khối 20 mặt đều.
Câu 40. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 10.
D. P = 21.
Câu 41. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
1
2
A.
.
B.
.
C. .
D. .
10
10
5
5
Trang 3/10 Mã đề 1
Câu 42. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
2
Câu 43. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 7.
C. 5.
D. 8.
Câu 44. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 45. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 10.
D. 12.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 46. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
x = 1 + 3t
Câu 47. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x = −1 + 2t
x
=
1
+
7t
x
=
−1
+
2t
x
=
1
+
3t
.
D.
B.
A.
y = −10 + 11t .
y=1+t
y = −10 + 11t . C.
y = 1 + 4t .
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
Câu 48. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Giảm đi n lần.
tan x + m
nghịch biến trên khoảng
Câu 49. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 50. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 51. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T = 1008.
D. T =
.
2017
Câu 52. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P =
.
D. P = 2i.
2
2
Câu 53. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
3
2
Câu 54. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim qn = 0 (|q| > 1).
D. lim k = 0.
n
Trang 4/10 Mã đề 1
2−n
Câu 55. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. −1.
C. 2.
D. 0.
Câu 56. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 1.
D. 3.
2
2
Câu 57. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.
C. 0.
D. +∞.
Câu 58. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Câu 59. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 60. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 8.
x+1
bằng
Câu 61. Tính lim
x→−∞ 6x − 2
1
1
A. .
B. .
C. 1.
6
2
Câu 62. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. 30.
D.
1
.
3
D. e.
Câu 63. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
1
Câu 64. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 65. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. −e.
C. − .
e
e
3
2
Câu 66. Điểm cực đại của đồ thị hàm số y = 2x − 3x − 2 là
A. (1; −3).
B. (0; −2).
C. (−1; −7).
D. (2; 2).
Câu 67. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.
D. 8 mặt.
12 + 22 + · · · + n2
n3
B. +∞.
D. −
1
.
2e
Câu 68. [3-1133d] Tính lim
1
.
3
Câu 69. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 3.
A. 0.
C.
D.
2
.
3
D. 1.
Trang 5/10 Mã đề 1
Câu 70. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 24.
D. 21.
Câu 71. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 3.
Câu 72. Dãy
!n số nào sau đây có giới
!n hạn là 0?
1
5
B.
.
A. − .
3
3
C. 1.
D. 2.
!n
4
C.
.
e
!n
5
D.
.
3
Câu 73. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 74. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
un
Câu 75. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
√
Câu 76. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 108.
C. 6.
D. 4.
Câu 77. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 6%.
D. 0, 5%.
Câu 78. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
B. 16.
C. 8 3.
D. 7 3.
A. 8 2.
Câu 79. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 3.
D. 4.
[ = 60◦ , S A ⊥ (ABCD).
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
√
a3 3
a3 2
a3 2
3
A.
C.
.
B. a 3.
.
D.
.
6
4
12
Câu 81. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. 3.
D. −6.
Câu 82. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.
C. 5.
Câu 83. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 6.
D. 2.
Trang 6/10 Mã đề 1
Câu 84. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.
D. {5; 3}.
Câu 85. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 2.
D. 7.
Câu 86. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 87. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H
⊥
(ABCD),
S
A
=
a
√ 5. Thể tích khối chóp3 S .ABCD là
√
3
3
4a 3
2a
4a3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
!2x−1
!2−x
3
3
Câu 88. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (−∞; 1].
C. (+∞; −∞).
D. [3; +∞).
2
Câu 89. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 4.
C. 2.
Câu 90. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
2
3
Câu 91. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
D. 5.
D. V = S h.
C. (−∞; 0) và (2; +∞). D. (0; 2).
Câu 92. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.
D. 8π.
Z 2
ln(x + 1)
Câu 93. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. −3.
C. 0.
D. 1.
Câu 94. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 0.
D. 1.
Câu 95. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
!4x
!2−x
2
3
Câu 96. Tập các số x thỏa mãn
≤
là
3 # 2
"
!
"
!
2
2
2
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
3
5
5
#
2
D. −∞; .
3
Câu 97. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; − .
C. −∞; .
2
2
2
!
1
D.
; +∞ .
2
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 98. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m < 0 ∨ m > 4.
Trang 7/10 Mã đề 1
π π
Câu 99. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
Câu 100. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
4
4
Câu 101. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
x+1
Câu 102. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 3.
C. 1.
D. .
A. .
4
3
x
Câu 103. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 2020.
D. 13.
Câu 104. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 10.
D. ln 14.
! x3 −3mx2 +m
1
Câu 105. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
Câu 106. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
1 − n2
bằng?
2n2 + 1
1
A. 0.
B. .
2
7n2 − 2n3 + 1
Câu 108. Tính lim 3
3n + 2n2 + 1
A. 0.
B. 1.
Câu 107. [1] Tính lim
C.
1
.
3
7
.
3
√
√
Câu 109. Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
√
√6 − x
C. 2 3.
A. 3.
B. 2 + 3.
C.
1
D. − .
2
2
D. - .
3
√
D. 3 2.
q
2
Câu 110. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 111. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
Câu 112. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. Thập nhị diện đều.
Trang 8/10 Mã đề 1
Câu 113. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 2.
D. 0, 5.
Câu 114. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
C. 8.
D. 30.
Câu 115. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
√
√
Câu 116. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt l √
√
A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 117. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD
√ là
√
3
3
3
a
4a 3
2a3 3
a
.
B.
.
C.
.
D.
.
A.
3
6
3
3
Câu 118. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
√
Câu 119.√Thể tích của khối lập phương có cạnh bằng a 2
√
√
2a3 2
A.
.
B. V = 2a3 .
C. 2a3 2.
D. V = a3 2.
3
Câu 120. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 14 năm.
D. 10 năm.
Câu 121. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (1; +∞).
D. (−∞; −1).
Câu 122. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
a
5a
.
B.
.
C.
.
D. .
A.
9
9
9
9
3
Câu 123. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e5 .
C. e.
D. e2 .
Câu 124. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −2e2 .
D. −e2 .
Câu 125. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {2}.
D. {5}.
Câu 126. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 9/10 Mã đề 1
A. Câu (III) sai.
B. Câu (II) sai.
C. Câu (I) sai.
D. Khơng có câu nào
sai.
Câu 127. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 3.
D. 4.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 128. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 5.
C. 2.
D. 4.
Câu 129. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
48
24
8
4x + 1
Câu 130. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
C. −1.
D. 4.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
3. A
4.
C
5.
7.
D
8. A
B
10.
11.
B
12.
13.
C
6. A
9.
D
C
14.
D
15.
C
16.
17.
C
18.
19.
B
B
D
C
B
20.
C
21.
D
22.
C
23.
D
24.
C
25.
D
26.
28.
27. A
29.
D
D
30. A
31. A
33.
B
32. A
B
34. A
35. A
36.
C
37.
D
38.
B
39.
D
40.
B
41.
B
42. A
43.
B
44.
45.
47.
D
46. A
48.
B
49. A
C
52. A
53.
B
54.
55.
B
56. A
60. A
61. A
62.
65.
C
58.
C
59. A
63.
D
50. A
51.
57.
C
C
D
67. A
D
64.
B
66.
B
68.
1
D
C
69.
B
70. A
71.
B
72.
73.
75.
D
B
74. A
76.
B
77. A
78.
79.
D
D
B
80.
C
82.
81. A
D
83.
C
84.
B
85.
C
86.
B
87.
89.
D
88. A
B
90.
B
91.
C
93.
B
94.
C
95.
B
96. A
97. A
D
98.
99. A
100. A
101.
102. A
103.
104.
106.
D
B
D
B
105.
D
107.
D
D
108.
D
109.
110.
D
111.
112.
D
113.
B
114.
D
115.
B
116.
D
117.
C
118.
D
119.
C
120. A
122.
C
121. A
C
123.
B
124.
D
125.
126.
D
127.
C
128.
D
129.
C
130.
D
2
D