TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
π
Câu 1. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
2 π4
3 π6
1 π3
B.
C.
D. 1.
e .
e .
A. e .
2
2
2
√
Câu 2. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
√
Câu 3. Thể tích của khối lập phương
√ có cạnh bằng a 2
3
√
√
2a 2
.
C. 2a3 2.
A. V = a3 2.
B.
D. V = 2a3 .
3
log(mx)
= 2 có nghiệm thực duy nhất
Câu 4. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
x
Câu 5. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B. un =
.
2
n
5n + n2
Câu 6. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. un =
C. Khối lập phương.
Câu 7.Z Các khẳng
! định nào sau đây là sai?
0
f (x)dx = f (x).
A.
Z
C.
Z
B.
f (x)dx = F(x) +C ⇒
Z
n2 + n + 1
.
(n + 1)2
f (u)dx = F(u) +C. D.
Z
k f (x)dx = k
D. un =
n2 − 2
.
5n − 3n2
D. Khối tứ diện đều.
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Câu 8. Thể tích của khối lăng trụ
√ tam giác đều có cạnh bằng
√ 1 là:
3
3
3
B.
.
C.
.
A. .
4
12
4
√
3
D.
.
2
Câu 9. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 2.
C. 1.
D. +∞.
Câu 10. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 16 m.
C. 8 m.
D. 12 m.
Câu 11. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có một hoặc hai.
D. Có hai.
Câu 12. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B.
.
x
10 ln x
1
1
C. y0 = .
D. y0 =
.
x
x ln 10
1 + 2 + ··· + n
Câu 13. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 1.
D. lim un = 0.
Trang 1/10 Mã đề 1
Câu 14. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 1.
D.
2n + 1
Câu 15. Tính giới hạn lim
3n + 2
1
3
C. .
D.
A. 0.
B. .
2
2
Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Ba cạnh.
D.
un
Câu 17. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D.
5.
2
.
3
Bốn cạnh.
1.
Câu 18. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
4
4
Câu 19. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).
C. (0; +∞).
D. (−∞; 0) và (2; +∞).
Câu 20. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.
C. 0.
D. 5.
Câu 21. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình tam giác.
D. Hình lăng trụ.
Câu 22. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3 √
√
2 3
.
D. 1.
A. 2.
B. 3.
C.
3
x−1 y z+1
Câu 23. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.
n−1
Câu 24. Tính lim 2
n +2
A. 1.
B. 3.
C. 2.
D. 0.
Câu 25. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
1
Câu 26. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = R.
Câu 27.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
1
dx = ln |x| + C, C là hằng số.
x
B.
Z
D.
xα dx =
D. D = (−∞; 1).
xα+1
+ C, C là hằng số.
α+1
0dx = C, C là hằng số.
Trang 2/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 28. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 29. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
tan x + m
Câu 30. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
2−n
Câu 31. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
C. 0.
D. 1.
√
2
Câu 32. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 62.
D. 63.
8
Câu 33. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
1 − 2n
Câu 34. [1] Tính lim
bằng?
3n + 1
2
2
1
B. .
C. − .
D. 1.
A. .
3
3
3
Câu 35. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; − .
B.
; +∞ .
C. − ; +∞ .
D. −∞; .
2
2
2
2
Câu 36. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).
Câu 37. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
C. .
A. −2.
B. − .
2
2
3
2
Câu 38. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).
D. (−∞; 6, 5).
D. 2.
D. (−∞; +∞).
Câu 39. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 40. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 41. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 18 tháng.
D. 15 tháng.
Câu 42. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 20.
D. 3, 55.
Trang 3/10 Mã đề 1
√
Câu 43. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
6
36
Câu 44. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 45. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
A.
.
B.
.
C. .
D. .
10
10
5
5
0 0 0 0
Câu 46. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. 2
.
D. √
.
.
C. √
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
mx − 4
Câu 47. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 45.
D. 34.
Câu 48. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {4; 3}.
5
Câu 49. Tính lim
n+3
A. 2.
B. 1.
C. 0.
D. {5; 3}.
D. 3.
Câu 50. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
B. a 2.
C.
A. a 3.
.
D.
.
2
3
Câu 51. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 3.
C. .
D. 2e + 1.
e
Câu 52. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 53. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 54. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√
√ của hàm số. Khi đó tổng M + m
A. 7 3.
B. 16.
C. 8 2.
D. 8 3.
! x3 −3mx2 +m
1
Câu 55. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m , 0.
D. m ∈ (0; +∞).
Câu 56. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 57. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.
C. 144.
D. 4.
Trang 4/10 Mã đề 1
Câu 58. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
6
24
12
Câu 59. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
9
5
A. −
.
B.
.
C.
.
D. − .
100
100
25
16
Câu 60. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 3.
C. 1.
D. .
2
2
Câu 61. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
4a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 62. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
3
3
a
a
a3
3
3
A. a3 .
B.
.
C.
.
D.
.
2
6
3
Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
12
4
2n + 1
Câu 64. Tìm giới hạn lim
n+1
A. 0.
B. 3.
C. 1.
D. 2.
x−3
bằng?
Câu 65. [1] Tính lim
x→3 x + 3
A. 1.
B. 0.
C. +∞.
D. −∞.
2
Câu 66. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B.
.
C. √ .
A. 3 .
3
e
2e
2 e
D.
1
.
e2
Câu 67. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 68. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 69. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.
Câu 70. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.
C. 12.
D. 8.
Trang 5/10 Mã đề 1
Z
Câu 71. Cho
1
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 1.
B.
1
.
2
4x + 1
bằng?
Câu 72. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 4.
1
.
4
C. 0.
D.
C. −1.
D. 2.
Câu 73. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
!4x
!2−x
2
3
Câu 74. Tập các số x thỏa mãn
≤
là
3
2
#
"
!
#
"
!
2
2
2
2
B. − ; +∞ .
C. −∞; .
D.
; +∞ .
A. −∞; .
5
3
3
5
Câu 75. Dãy
!n số nào sau đây có giới
!n hạn là 0?
1
5
A. − .
B.
.
3
3
!n
4
C.
.
e
!n
5
D.
.
3
Câu 76. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.
C. 12.
D. 8.
x
Câu 77. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. 1.
D. .
2
2
2
3
2
x
Câu 78. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2√
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.
Câu 79. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
5
7
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.
3
3
3
log 2x
Câu 80. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 ln 2x
1
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
2x3 ln 10
x3 ln 10
2x3 ln 10
√
Câu 81. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 108.
D.
1 3
Câu 82. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D.
2n − 3
Câu 83. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. −∞.
D.
Câu 84. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (2; +∞).
y0 =
1 − 2 log 2x
.
x3
6.
(1; +∞).
1.
D. (0; 2).
Câu 85. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
15
6
9
Trang 6/10 Mã đề 1
Câu 86. Cho số phức z thỏa mãn |z +
√
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
C. |z| = 10.
D. |z| = 17.
A. |z| = 17.
B. |z| = 10.
Câu 87. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 9 cạnh.
D. 10 cạnh.
Câu 88. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C. 7.
D.
.
2
2
Câu 89. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 90. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. .
D. 9.
A. 6.
B. .
2
2
Câu 91. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 212 triệu.
D. 216 triệu.
Câu 92. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = e + .
A. T = e + 3.
B. T = 4 + .
e
e
Câu 93. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.
C. 8.
D. 10.
Câu 94. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 3.
C. 0.
D. 1.
Câu 95. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.
D. {4; 3}.
C. {3; 4}.
log23
Câu 96. [3-1224d] Tìm tham số thực m để phương trình
1
1
A. m > .
B. m ≥ .
C. m ≤
4
4
Câu 97. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.
C. 12.
x + log3 x + m = 0 có nghiệm
1
1
.
D. m < .
4
4
D. 30.
x3 −3x+3
Câu 98. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
3
2
A. e.
B. e .
C. e .
D. e5 .
Câu 99. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
d = 300 .
Câu 100. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
√
3
√
a 3
3a3 3
3
3
A. V =
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
2
2
Trang 7/10 Mã đề 1
√
Câu 101. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 64.
D. 62.
Câu 102. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d ⊥ P.
D. d song song với (P).
Câu 103. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
D. 6 mặt.
1
a
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 2.
D. 4.
Câu 104. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 1.
B. 7.
Câu 105. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
Câu 106. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 6.
D. 5.
Câu 107. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Câu 108. Tính lim
A. 0.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
B. .
3
2
C. - .
3
D. 1.
2
Câu 109. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.
D. 7.
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
√
2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
1
Câu 111. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 112.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
12
√
a3 2
C.
.
4
√
a3 2
D.
.
2
Câu 113. [4-1245d] Trong tất cả
√ các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 1.
B. 2.
C. 10.
D. 2.
Câu 114. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Trang 8/10 Mã đề 1
Câu 115. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 4.
D. V = 3.
Câu 116. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
Câu 117. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
√3
Câu 118. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
B. − .
C. 3.
D. −3.
A. .
3
3
Câu 119. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
√
√
Câu 120. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 121. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 27.
A. 12.
B.
2
Câu 122. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
4a3 3
2a3
2a3 3
4a3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 123. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 8.
D. 20.
Câu 124. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
Câu 125. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.
√
√
√
5 13
.
B. 26.
C. 2 13.
D. 2.
A.
13
Câu 126. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (II).
Câu 127. [1] Tập xác định của hàm số y = 2
A. D = R.
B. D = R \ {0}.
x−1
C. (I) và (III).
D. (II) và (III).
C. D = (0; +∞).
D. D = R \ {1}.
C. 30.
D. 10.
là
Câu 128. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.
Trang 9/10 Mã đề 1
Câu 129. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 2, 4, 8.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
d = 60◦ . Đường chéo
Câu 130. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
3.
5.
2.
C
B
C
7.
9. A
4.
C
6.
C
8.
C
10.
11.
B
B
12.
C
13. A
D
14. A
D
15.
C
17.
D
19.
23.
C
18.
C
20. A
C
21.
16.
22. A
D
24.
25. A
D
26.
B
B
27.
B
28.
29.
B
30.
C
31.
B
32.
C
33.
B
34.
C
35.
C
36.
38.
37. A
39.
D
40. A
C
41.
B
42.
43.
B
44.
B
C
46.
45. A
47.
D
49.
51.
B
D
48. A
C
B
50.
C
52.
C
53. A
54.
55. A
56.
D
58.
D
59. A
60.
D
61. A
62.
63. A
64.
D
D
57.
C
65.
B
66.
67.
B
68. A
1
B
B
69.
71.
D
B
C
73.
75.
B
72.
B
74.
B
76.
B
77.
70.
C
C
78.
B
B
79.
B
80.
81.
B
82. A
83.
B
84.
D
86.
B
87.
D
88.
B
89.
C
91.
C
93.
C
C
90.
92. A
94.
C
95.
96.
C
97. A
98.
D
100.
101.
D
102. A
103. A
104.
105.
107.
C
B
108.
C
C
110.
111.
D
112.
C
C
116.
C
B
118. A
119.
B
120. A
122. A
C
123. A
124.
125. A
126.
127. A
128. A
129.
B
114.
117.
121.
B
C
D
115.
D
106.
109.
113. A
D
130.
C
2
D
B
B