TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√
√ phẳng vng góc với 3(ABCD).
3
3
√
a 3
a 2
a 3
.
B.
.
C.
.
D. a3 3.
A.
2
4
2
Câu 3.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vô số.
C. 2.
D. 1.
Câu 4. [4] Xét hàm số f (t) =
Câu 5. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vơ nghiệm.
C. 1.
D. 3.
1
Câu 6. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 4.
D. 1.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 7. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 5.
B. 4.
C. 3.
D. 2.
Câu 8. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 9. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (2; 4; 3).
D. (1; 3; 2).
Câu 10. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
a 5
11a2
a2 7
a2 2
A.
.
B.
.
C.
.
D.
.
16
32
8
4
Câu 11. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.
C. 8.
D. 10.
Trang 1/10 Mã đề 1
Câu 12. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
√
Câu 13. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vơ số.
Câu 14. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 5
a3
a3 15
.
B.
.
C.
.
D.
.
A.
5
25
25
3
Câu 15. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 16 m.
D. 24 m.
Câu 16. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
3
3
3
120.(1, 12)
(1, 01)
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Z 2
ln(x + 1)
Câu 17. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 1.
D. 0.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 18. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
4035
2017
A.
.
B.
.
C. 2017.
D.
.
2017
2018
2018
Câu 19. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 20. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
c a2 + b2
a b2 + c2
abc b2 + c2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
!4x
!2−x
2
3
Câu 21. Tập các số x thỏa mãn
≤
là
3 # 2
#
"
!
"
!
2
2
2
2
A. −∞; .
B. −∞; .
C. − ; +∞ .
D.
; +∞ .
5
3
3
5
1
Câu 22. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
Trang 2/10 Mã đề 1
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
A. −2 ≤ m ≤ −1.
Câu 23. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim = 0.
n
1
C. lim k = 0.
D. lim un = c (un = c là hằng số).
n
Câu 24. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 12.
D. ln 4.
Câu 25. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 11 cạnh.
D. 10 cạnh.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 26. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. 1.
C. −2.
D. −5.
2x + 1
Câu 27. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.
D. 2.
2
d = 120◦ .
Câu 28. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 2a.
C.
.
D. 4a.
2
1
Câu 29. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
√
√
Câu 30.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6 −√x
√
√
B. 2 3.
C. 2 + 3.
D. 3.
A. 3 2.
√
√
Câu 31. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 32. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
Câu 33. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Câu 34. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.
C. 0.
D. +∞.
Câu 35. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 2.
Câu 36. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
Trang 3/10 Mã đề 1
Câu 37. Hàm số y =
A. x = 0.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
Câu 38. Hàm số y = x − 3x + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).
3
C. x = 1.
D. x = 3.
C. (0; +∞).
D. (−∞; 0) và (2; +∞).
2
Câu 39. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 40. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
log 2x
Câu 41. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y
=
.
2x ln 10
2x3 ln 10
x3 ln 10
x3
√
Câu 42. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
a 6
a3 6
a3 6
a3 2
.
B.
.
C.
.
D.
.
A.
6
18
6
36
x2 − 5x + 6
Câu 43. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 0.
D. 1.
Câu 44. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 45. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
12
24
6
Câu 46. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =
A. Nếu
Z
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu
f 0 (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
2n2 − 1
Câu 47. Tính lim 6
3n + n4
A. 1.
B. 0.
2
.
D. 2.
3
Câu 48. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. e.
D. 1.
x−3 x−2 x−1
x
Câu 49. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
C.
Trang 4/10 Mã đề 1
A. [2; +∞).
C. (2; +∞).
B. (−∞; 2).
D. (−∞; 2].
Câu 50. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 + 6.9 = 0 là
A. 0.
B. 1.
C. 3.
D. 2.
Câu 51. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (−∞; +∞).
D. (1; 2).
x
x
x
Câu 52. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. 3.
D. −3.
3
2
π
Câu 53. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 3 3 + 1.
B. T = 2.
C. T = 4.
D. T = 2 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 54. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
a3 2
a3 3
a3 2
.
B.
.
C.
.
D. a3 3.
A.
12
4
6
Câu 55. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
un
Câu 57. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. −∞.
D. 0.
√
x2 + 3x + 5
Câu 58. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 0.
C. 1.
D. .
4
4
1
Câu 59. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 56. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 60. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.
C. 8 năm.
D. 10 năm.
Câu 61. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 72.
4x + 1
Câu 62. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.
C. 2.
D. 0, 8.
D. 4.
Câu 63. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1079
23
1637
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Trang 5/10 Mã đề 1
!
!
!
4x
1
2
2016
Câu 64. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 1008.
A. T = 2017.
B. T = 2016.
C. T =
2017
Câu 65. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. −6.
D. 5.
Câu 66. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 4 mặt.
D. 6 mặt.
2
Câu 67. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 68. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
C. 6.
Câu 69. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
C. 12.
D. 4.
D. 8.
! x3 −3mx2 +m
1
Câu 70. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m ∈ (0; +∞).
D. m = 0.
Câu 71. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −2.
D. m = −3.
0
Câu 72. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
.
B. 2.
C. 1.
D. 3.
A.
3
Câu 73. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 3.
D. 1.
Câu 74. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
3
√
a 6
a 5
a
15
A.
.
B.
.
C. a3 6.
D.
.
3
3
3
Câu 75. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
x+3
Câu 76. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 77. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.
C. D = (0; +∞).
D. D = R.
Trang 6/10 Mã đề 1
Câu 78. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
C. a 2.
D.
A.
.
B. a 3.
.
3
2
Câu 79. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
A.
c+2
c+1
c+3
Câu 80. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. (4; 6, 5].
D.
3b + 2ac
.
c+2
D. [6, 5; +∞).
x2
Câu 81. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 2 − log2 3.
D. 3 − log2 3.
√
Câu 82. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 62.
D. 63.
Câu 83. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 21.
D. 22.
2n + 1
Câu 84. Tính giới hạn lim
3n + 2
3
2
1
A. 0.
B. .
C. .
D. .
2
3
2
Câu 85. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 86.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
.
B.
.
C.
.
A.
4
2
12
Câu 87. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Ba mặt.
D.
3
.
4
D. Hai mặt.
Câu 88. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
Câu 89. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 90. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Trang 7/10 Mã đề 1
Câu 91. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 92. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
.
B. a 2.
.
D. 2a 2.
A.
C.
2
4
Câu 93. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
C. .
D.
.
A. 1.
B. .
2
2
2
Câu 94. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
Câu 95. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −7.
A. −4.
B. −2.
C.
27
[ = 60◦ , S O
Câu 96. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√
√ Khoảng cách từ A đến (S√BC) bằng
√
2a 57
a 57
a 57
.
C.
.
D.
.
A. a 57.
B.
19
19
17
Câu 97. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 98. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 99. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
B. 26.
C.
.
D. 2 13.
A. 2.
13
x
Câu 100. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 18.
C. 12.
D. 27.
2
√
Câu 101. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6
Trang 8/10 Mã đề 1
Câu 102. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B. 68.
C.
.
D. 5.
A. 34.
17
2
Câu 103. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
D. −e.
e
2e
e
Câu 104. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
12 + 22 + · · · + n2
Câu 105. [3-1133d] Tính lim
n3
1
2
A. .
B. 0.
C. +∞.
D. .
3
3
2
Câu 106. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 107. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 108. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 109. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 110. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
√
Câu 111. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
√
a3 3
a3
a3 3
3
.
B.
.
C. a 3.
D.
.
A.
3
4
12
Câu 112. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 113. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 114. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 115. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Hai mặt.
D. Ba mặt.
Trang 9/10 Mã đề 1
x3 − 1
Câu 116. Tính lim
x→1 x − 1
A. +∞.
B. −∞.
C. 0.
D. 3.
Câu 117. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
.
A.
D.
2
3
6
Câu 118. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
Câu 119.
thức nào sau đây khơng có nghĩa
√ Biểu
0
A. (− 2) .
B. 0−1 .
C.
√
−1.
−3
D. (−1)−1 .
Câu 120. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Khơng có.
D. Có một.
2
Câu 121. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.
D. 7.
Câu 122. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 123. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.
D. −2.
Câu 124. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
log 2x
Câu 125. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x ln 10
x
2x ln 10
Câu 126. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
3
3
3
A. 20a .
B. 10a .
C. 40a .
D.
.
3
√
2
Câu 128.
√ Xác định phần ảo của số√phức z = ( 2 + 3i)
A. 6 2.
B. −6 2.
C. 7.
D. −7.
Câu 129.
[1233d-2] Mệnh đề nào sau đây sai?
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
A.
Trang 10/10 Mã đề 1
Z
D.
[ f (x) + g(x)]dx =
Z
f (x)dx +
2n + 1
Câu 130. Tìm giới hạn lim
n+1
A. 0.
B. 1.
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.
C. 2.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2. A
3. A
4.
5. A
6.
7.
B
8.
9.
B
10.
C
D
B
C
D
11.
C
12.
13.
C
14.
15.
C
16.
D
17. A
18.
D
19. A
20.
21.
C
B
B
22. A
23. A
24. A
25.
D
26. A
27.
D
28.
29.
30. A
C
31.
C
D
32.
B
33.
B
34.
C
35.
B
37.
C
38.
D
39. A
40. A
42.
41.
43.
B
44. A
D
48.
47.
52.
D
B
56.
51.
C
53.
C
55. A
57.
C
58. A
D
59. A
B
61.
62.
D
63.
64.
D
65.
66.
D
67. A
68.
B
49. A
C
50. A
60.
B
45. A
46.
54.
C
69. A
C
1
B
D
B
70.
72.
D
73. A
B
74. A
76.
75.
D
C
81.
82.
C
83.
84.
C
85. A
86. A
89.
C
B
B
95.
B
B
97. A
C
98. A
99.
B
B
B
C
103.
104.
C
105. A
106. A
C
101.
102.
C
107.
108.
D
109. A
110.
D
111. A
112.
D
113.
115. A
117.
D
B
D
118.
D
120.
B
B
D
122.
123.
D
124.
B
B
116.
121.
D
126. A
127. A
129.
C
93. A
96.
125.
D
91. A
92. A
119.
C
87.
88.
100.
D
79. A
80.
94.
B
77.
B
78.
90.
C
71.
128. A
130.
C
2
C