Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (365)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.73 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.
C. 10.

D. 12.

Câu 2. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.


4n2 + 1 − n + 2
bằng
Câu 3. Tính lim
2n − 3
3
A. .
B. 1.


C. 2.
D. +∞.
2
Câu 4. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

Câu 5. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 6. [3] Biết rằng giá trị lớn nhất của hàm số y =

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e


số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.

C. S = 22.

D. S = 135.

Câu 7. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.

C. 8.

D. 12.

Câu 8. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.

D.
.
6
12
12
4
Câu 9. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 10. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 11. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Trang 1/10 Mã đề 1


Câu 12. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
.
A. a 6.
B. a 3.
C. 2a 6.
D.
2
Câu 13. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 14. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
8
Câu 15. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.

Câu 16. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. 63.
B. Vô số.
C. 64.
D. 62.
Câu 17. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim = 0.
n

1
= 0.
nk
D. lim qn = 0 (|q| > 1).
B. lim

Câu 18. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
log 2x
Câu 19. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
.

B. y0 = 3
.
C. y0 =
.
A. y0 =
.
D. y0 = 3
3
3
2x ln 10
x ln 10
x
2x ln 10
Câu 20. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 21. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 22. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 2, 4, 8.
B. 2 3, 4 3, 38.
C. 8, 16, 32.

D. 6, 12, 24.
Câu 23. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. 13.
D. log2 13.
Câu 24. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 2.
Câu 25. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −2.
C. x = −5.
4x + 1
Câu 26. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.
C. 4.

D. 1.
D. x = −8.
D. 2.
Trang 2/10 Mã đề 1


Câu 27. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng

7
5
A. .
B. 9.
C. .
D. 6.
2
2
Câu 28. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
Câu 29. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {4; 3}.

D. {3; 3}.

Câu 30. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .

D. m < .
4
4
4
4

x+ 1−x2


x+ 1−x2

Câu 31. [12215d] Tìm m để phương trình 4
− 4.2
− 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
C. m ≥ 0.
D. 0 ≤ m ≤ .
4
4
4
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 32. Tìm m để hàm số y =
x+m
A. 45.
B. 34.

C. 67.
D. 26.
Câu 33. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và


√ (A C D) bằng

a 3
a 3
2a 3
.
B.
.
C.
.
D. a 3.
A.
2
2
3
x
Câu 34. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 27.
A. 18.
B. 12.

C.
2
x−2
Câu 35. Tính lim
x→+∞ x + 3
2
A. −3.
B. 2.
C. 1.
D. − .
3
Câu 36. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
.
D. 2 13.
A. 26.
B. 2.
C.
13
x−1 y z+1
= =

Câu 37. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1

−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
Câu 38. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
9t
Câu 39. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. 2.
D. Vơ số.
Câu 40. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.

D. 5 mặt.
Trang 3/10 Mã đề 1



Câu 41. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vô số.
C. 1.
D. 3.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 42. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
C. P = 16.
D. P = −2.
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 20a3 .
C. 40a3 .
D. 10a3 .
A.
3

Z 1
6
2
3
Câu 44. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.

B. −1.

C. 6.
0

0

D. 4.

0

Câu 45. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
6
36
12
Câu 46. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
2n + 1
Câu 47. Tìm giới hạn lim
n+1
A. 0.

B. 3.

C. Cả hai đều sai.

D. Chỉ có (II) đúng.

C. 1.

D. 2.

Câu 48. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a
3a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29

29
29
Câu 49. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 12.
D. 20.
1
Câu 50. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 51. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [1; 2].

D. [−1; 2).

Câu 52. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.

D. Hai khối chóp tam giác.
Trang 4/10 Mã đề 1


Câu 53. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. 0.
D. −6.
2

Câu 54. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.

D. 7.

Câu 55. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

D. Khối bát diện đều.

C. Khối tứ diện đều.

Câu 56. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

67
.

27
Câu 57. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B.
.
C. 34.
D. 68.
A. 5.
17
Câu 58. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B. y0 = .
C. y0 =
.
D.
.
x
x
x ln 10
10 ln x

Câu 59. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
!
1
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng −∞; .
!
! 3
1
1
D. Hàm số đồng biến trên khoảng ; 1 .
C. Hàm số nghịch biến trên khoảng ; 1 .
3
3
[ = 60◦ , S O
Câu 60. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
17

19
19
Câu 61. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).
C. (0; 2).
D. (0; +∞).
A. −7.

B. −4.

C. −2.

D.

Câu 62. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

D. Chỉ có (I) đúng.


Câu 63. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Khơng thay đổi.
C. Giảm đi n lần.
D. Tăng lên n lần.
Câu 64. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 65. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
log2 240 log2 15
Câu 66. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 1.
D. 4.
Trang 5/10 Mã đề 1


Câu 67. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.

2x + 1
x→+∞ x + 1
B. −1.

Câu 68. Tính giới hạn lim
A. 2.

1
Câu 69. [1] Giá trị của biểu thức log √3
bằng
10
1
A. 3.
B. − .
3

C.

1
.
2

D. 1.

C.

1
.
3


D. −3.

d = 30◦ , biết S BC là tam giác đều
Câu 70. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
26
9
13
Câu 71. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un


!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim
vn

Câu 72. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
a
a 3
a3 3
3
A.

.
B. a .
C.
.
D.
.
3
9
3
Câu 73. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−1; 3].
D. [−3; 1].
√3
Câu 74. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. .
C. − .
D. −3.
3
3
Câu 75. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 5.
C. 6.
D. −5.




x = 1 + 3t




Câu 76. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương

 trình là










x = 1 + 3t

x = −1 + 2t
x = −1 + 2t
x = 1 + 7t
















.
A. 
B. 
y = −10 + 11t . D. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . C. 

















z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
2

Trang 6/10 Mã đề 1



Câu 77. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3

πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 78. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n3 lần.
D. n2 lần.
1 − 2n
Câu 79. [1] Tính lim
bằng?
3n + 1
2
2
1
B. − .
C. 1.
D. .
A. .

3
3
3

Câu 80. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6
6
36
Câu 81. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.

C. 24.
D. 2.
Câu 82. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. .
B.
.
n
n

1
C. √ .
n

D.

Câu 83. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.

C. D = (0; +∞).

D. D = R \ {1}.

0

0

n+1

.
n

0

Câu 84. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
6
3
2
Câu 85. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).


2
Câu 86. Xác định phần ảo của số

√ phức z = ( 2 + 3i)
A. 7.
B. 6 2.
C. −7.
D. −6 2.
Câu 87. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là

3

a3 3
2a
a3 3
3
A.
D.
.
B.
.
C. a3 3.
.
6
3
3
[ = 60◦ , S A ⊥ (ABCD).
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD

Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 3
a3 2
3
A.
.
B. a 3.
C.
.
D.
.
6
12
4
1
Câu 89. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 3.
D. 1.
Câu 90. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.
D. Bốn cạnh.

Z 1
Câu 91. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4

0

B.

1
.
2

C. 1.

D. 0.
Trang 7/10 Mã đề 1





x=t




Câu 92. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 

y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
2
2n − 1
Câu 93. Tính lim 6
3n + n4

2
A. 2.
B. 1.
C. .
D. 0.
3
Câu 94. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 18 tháng.
D. 16 tháng.
Câu 95. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log π4 x.
A. y = log 14 x.

D. y = log √2 x.
C. y = loga x trong đó a = 3 − 2.
Câu 96. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.

D. Tứ diện đều.
d = 120◦ .
Câu 97. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.

C. 3a.
D. 4a.
A. 2a.
B.
2
 π π
3
Câu 98. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. −1.
D. 3.
2−n
Câu 99. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. 2.
D. −1.
Câu 100. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 101. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối

√ chóp S .ABCD là


a3 5
a3 15
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 102.
Cho hàm số f (x),
mệnh đề nào sai?
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, Z
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 103. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
2a 3
4a
4a 3
2a3
A.

.
B.
.
C.
.
D.
.
3
3
3
3
Trang 8/10 Mã đề 1


Câu 104. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. 9.

D. Không tồn tại.

Câu 105. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
a3 3
8a3 3
8a3 3
4a3 3
A.
.

B.
.
C.
.
D.
.
9
3
9
9
Câu 106. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −7.
D. −5.
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3

a 3
a 2
a 3
A.
.
B.
.

C. a3 3.
D.
.
4
2
2
x2 − 9
Câu 108. Tính lim
x→3 x − 3
A. 3.
B. +∞.
C. 6.
D. −3.

Câu 109. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. (1; 2).
B.
;3 .
C. [3; 4).
D. 2; .
2
2
Câu 110.
hạn là 0?
!n Dãy số nào sau đây có !giới

n
4
5
.
B.
.
A.
e
3

!n
1
C.
.
3

!n
5
D. − .
3

Câu 111. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
5
9
A.
.
B. −

.
C. − .
D.
.
100
100
16
25
!
1
1
1
Câu 112. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
D. .
A. +∞.
B. 2.
C. .
2
2
3
2
Câu 113. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).

D. Hàm số đồng biến trên khoảng (1; 2).
Câu 114. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 2.
Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
e
2e
e
Câu 116. Biểu thức nào sau đây không
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .
C. 0−1 .

D. 1.
D. −e.
D.


−1.

−3


Câu 117. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = 2.
1
Câu 118. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 1.
D. 3.
Trang 9/10 Mã đề 1




x2 + 3x + 5
x→−∞
4x − 1
1
A. 0.
B. .
4
Câu 120. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

Câu 119. Tính giới hạn lim

1
C. − .
4

D. 1.

C. {3; 3}.

D. {3; 4}.

Câu 121. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.
!4x
!2−x
2
3
Câu 122. Tập các số x thỏa mãn


2
#
" 3 !
#
2
2
2

A. −∞; .
B.
; +∞ .
C. −∞; .
3
5
5
Câu 123. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

C. 11 cạnh.

D. Bốn mặt.

"

!
2
D. − ; +∞ .
3
D. 12 cạnh.

Câu 124. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.

B. 2
.
D.
.
A. √
.
C.


a + b2
2 a2 + b2
a2 + b2
a2 + b2
x−3
Câu 125. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. +∞.

C. −∞.

D. 1.

Câu 126. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.

C. 8.


D. 5.

q
Câu 127. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].

Câu 128. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 6.
D. 36.
Câu 129. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 130. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.

- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

B

3.

B

4.

B

5.

B

6. A

7.


D

8.

9. A

10.

12. A

13.
C

14.

15.

16.

D

17.

18.

D

19.


C

20.
22.
24.

B
C

28.

D
C
B
D
B

21. A
D

26.

B

23.

D

25.


D

27. A
D

29.

B

30.

B

31.

32.

B

33.

C

35.

C

34. A
36.


C

37. A

38. A
40.

D

C

39.
41. A

B

42. A

43.

B

44.

D

45.

D


46.

D

47.

D

48.

D

49.

B

51.

B

50. A
52.

B

53. A

54.

D


55.

56.

C

57.

58.

C

59.

60.
62.

D

66.

B
C

61. A
63.

B


64.

C

C

65.

C
B

68. A
1

D

67.

B

69.

B


70.

D

72. A


71.

D

73.

D
D

74.

B

75.

76.

B

77.

B

79.

B

81.


B
B

78.

C

80. A
82.

D

83.

84.

D

85.

86.

87.

B
D

88.
90.


C
B
D

89.
91.

C

B

92.

D

93.

D

94.

D

95.

D

97.

C


96.

99.

98. A
100.

B

B

102.

D

101. A
C

103.

104.

B

105.

106.

B


107.

B
C
D

108.

C

109.

B

110.

C

111.

B

112.

B

113.

B


114.

B

115.

B

116.

C

117. A

118.

C

119.
121.

120. A
122.

D

123. A

124.


D

125. A

126.

D

127.

B

128. A
130.

C

129.
D

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×