Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (386)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.08 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3

. Khi đó thể tích khối lăng trụ là
4 √



a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.


A.
6
36
24
12
Câu 2. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e.
C. 3.
e

D. 2e + 1.

x−1
y
z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình


Câu 4. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
2

Câu 5. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.

D. 2 − log2 3.

Câu 6. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 7. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
Câu 8. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a


C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

Câu 9. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
12
6
24
Câu 10. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.

D. Phần thực là 3, phần ảo là 4.
Câu 11. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2
5n − 3n2

C. un =

n2 − 3n
.
n2

D. un =

1 − 2n
.
5n + n2
Trang 1/11 Mã đề 1


1
Câu 12. Hàm số y = x + có giá trị cực đại là

x
A. −1.
B. 1.

C. −2.

D. 2.

Câu 13. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.

C. 8.

D. 20.

Câu 14. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
Câu 15. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 16. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.

C. 1 − sin 2x.

D. −1 + 2 sin 2x.

Câu 17. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.

D. 8.

C. 6.

Câu 18. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4 − 2e
4 − 2e
Câu 19. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.


D. m =

1 + 2e
.
4e + 2

Câu 20. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 21. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).

B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 22. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C.
.
2
2
Câu 23. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.
C. 20.

D. 1.
D. 30.

Câu 24. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 25. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 6.


C. 10.

D. 8.

Câu 26. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Trang 2/11 Mã đề 1


Câu 27. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.
D. Khối bát diện đều.

Câu 28. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
Câu 29. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.

D.
u(x)
Câu 30. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (0; −2).
Câu 31. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.
4x + 1
bằng?
Câu 32. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −4.

D. (1; −3).

C. y0 = 1 − ln x.

D. y0 = x + ln x.

C. 4.

D. −1.

Câu 33. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.

D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 34. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
với
đáy

S
C
=
a
3. Thể
√ tích khối chóp S .ABC
√là


3
3
3
2a 6
a 6
a3 3
a 3
.
B.
.
C.
.
D.
.

A.
4
9
12
2
Câu 35. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+3
c+2
c+1
!x
1
1−x
Câu 36. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. 1 − log2 3.

C. − log3 2.
D. log2 3.
Câu 37. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(−4; 8).
D. A(4; 8).
Câu 38. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 40 .(3)10
C 20 .(3)20
C 20 .(3)30
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
1
Câu 39. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 2.

D. 1.
Câu 40. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. 5.
C. .
5


D. 25.
Trang 3/11 Mã đề 1


x+1
Câu 41. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
4
3
Câu 42.

C. 3.

D. 1.


[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].

C. m ∈ [0; 4].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [−1; 0].

Câu 43. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 2.

C. 1.

Câu 44. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Hai cạnh.


D. 0.
D. Năm cạnh.

Câu 45. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 91cm3 .
D. 64cm3 .
7n2 − 2n3 + 1
Câu 46. Tính lim 3
3n + 2n2 + 1
2
7
B. 1.
C. - .
D. 0.
A. .
3
3
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 47. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2

a3 3
2
A.
D.
.
B.
.
C. 2a 2.
.
24
12
24
x−3
Câu 48. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. +∞.
C. 1.
D. −∞.
Câu 49. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
Câu 50. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.


C. 6.

D. 10.

Câu 51. Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).
Câu 52. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
log2 a
loga 2

0 0 0 0
0
Câu 53.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
3
2
2

Trang 4/11 Mã đề 1


Câu 54. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.

π
Câu 55. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 3 3 + 1.
D. T = 4.
A. T = 2.
B. T = 2 3.
Câu 56. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {3}.
D. {5}.
Câu 57. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 58. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Bốn mặt.
C. Ba mặt.
Câu 59. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.


D. Hai mặt.

C. 3.

D. 2.
q
2
Câu 60. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
Câu 61. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 11.
C. 4.
D. 10.
Câu 62. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD

a3 3
a
a 3

A.
.
B.
.
C.
.
D. a3 .
3
3
9
[ = 60◦ , S O
Câu 63. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19

5
Câu 64. Tính lim
n+3
A. 0.
B. 1.
C. 2.
D. 3.
Câu 65. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {3; 3}.

D. {4; 3}.

Câu 66. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 2400 m.
D. 1134 m.
Câu 67.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =

f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

Trang 5/11 Mã đề 1


Z
D.

[ f (x) + g(x)]dx =

Z

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Câu 68. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. Vơ nghiệm.

Câu 69. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

67
.
27
Câu 70. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
A. −4.

B. −7.

Câu 71. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.

C. −2.

D.

C. 30.

D. 20.

Câu 72. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).

C. (4; 6, 5].
!
1
1
1
+ ··· +
Câu 73. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
A. 2.
B. +∞.
C. .
2
2
Câu 74. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.

D. (−∞; 6, 5).

D.

3
.
2

D. −3.


Câu 75. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
Câu 76. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
.
C. 2a 2.
D.
.
A. a 2.
4
2
Câu 77. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 78.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.


A.
Z
C.

B.
Z

1
dx = ln |x| + C, C là hằng số.
x

D.

0dx = C, C là hằng số.
xα dx =

xα+1
+ C, C là hằng số.
α+1

1
Câu 79. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
2


Câu 80. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
B.
A. √ .
.
C. 3 .
3
2e
e
2 e

1
.
e2
 π π
Câu 81. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 1.
D. 3.
D.

Trang 6/11 Mã đề 1


x+3
Câu 82. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =

nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. 3.
D. Vô số.
Câu 83. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
23
5
A.
.
B.
.
C. −
.
D. − .
25
100
100
16
2
Câu 84. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 46cm3 .

D. 72cm3 .
Câu 85. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 3.

D. 27.

Câu 86. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
C. 20.
D. 30.
1
Câu 87. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 88. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) xác định trên K.

D. f (x) liên tục trên K.

Câu 89. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
d = 60◦ . Đường chéo
Câu 90. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3

a3 6
2a
6
4a3 6
.
B.
.
C. a3 6.
D.
.
A.

3
3
3
Câu 91. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √

4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
Câu 92. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 93. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. β = a β .
a
log3 12
Câu 94. [1] Giá trị của biểu thức 9
bằng

A. 2.
B. 24.
C. 144.
D. 4.
Trang 7/11 Mã đề 1


Câu 95. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3
Câu 96. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.
D. (2; +∞).
p

1
ln x
Câu 97. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
9
3
9
Câu 98. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 99. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.

B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 100. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
log7 16
Câu 101. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −4.
B. 2.
C. 4.
D. −2.
Câu 102. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

C. 9.


D. 0.

Câu 103. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 7.

Câu 104. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
B.
.
C.
.
D.
.
A. a 3.
2
3
2
d = 120◦ .

Câu 105. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 2a.
C. 4a.
D. 3a.
2
!
1
1
1
Câu 106. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. 1.
D. .
2
Câu 107. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a


x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

Trang 8/11 Mã đề 1


Câu 108. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.

C. 10.

D. 8.

Câu 109. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?

A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
12 + 22 + · · · + n2
n3
B. 0.

Câu 110. [3-1133d] Tính lim
A. +∞.

C.

1
.
3

2
.
3

D.

Câu 111. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.

D. Hình lập phương.


Câu 112. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 113. Hàm số y =
A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.

C. x = 1.

D. x = 3.

Câu 114. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
B.
; +∞ .
C. −∞; .
A. − ; +∞ .
2
2
2


!
1
D. −∞; − .
2

Câu 115. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
2

2

sin x
Câu 116.
+ 2cos x√lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá
√ trị lớn nhất của hàm số f (x) = 2
A. 2 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.

Câu 117. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?

A. (1; +∞).
B. (−∞; 1).
C. (−∞; −1).
D. (−1; 1).

x2 + 3x + 5
Câu 118. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 0.
D. 1.
4
4
Câu 119. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
.
D.
.
B. √
.
C. 2
.

A. √

a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 120. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có một hoặc hai.
D. Có hai.
Câu 121. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.

D. 8 mặt.

1 − n2
Câu 122. [1] Tính lim 2
bằng?
2n + 1
1
A. .
B. 0.
2

1
D. − .

2

C.

1
.
3

Trang 9/11 Mã đề 1


Câu 123.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
3
A.
.
B.
.
C.
.
D. .
12
2
4
4
0 0 0 0

Câu 124. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
18
6
3a
Câu 125. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .
B.
.
C. .

D.
.
4
3
3
3
Câu 126. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3
3

a 15
a 5
6
a
A.
.
B.
.
C. a3 6.
.
D.
3
3
3
Z 3

x
a
a
Câu 127. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = 4.
D. P = −2.
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


a3 2
a3 3
a3 3
a3 6
.
B.
.
C.
.
D.
.

A.
48
16
24
48
Câu 129. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng



c a2 + b2
b a2 + c2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 130. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.

B. 6 mặt.
C. 4 mặt.

D. 8 mặt.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4.

5.

D

6. A


7. A

10.

11.

D
B
D

15.

C

23.
25.

12.

C

14.

C
D

18. A

B


21.

B

16.

C

17.
19.

B

8. A

9. A
13.

C

D
B

20.

B

22.


B

24.

B

26.

27. A

28.

29.

D

C
B

30.

C

31. A

32.

C

33. A


34.

C

35. A

36. A

37.

D

38.

39.

D

40.

D

42.

D

41. A
43.


B

44. A

45.

D

46.

47.

D

48. A

49.

B

50.

51.
53.

D
B

55.


D

57. A

C
B

52.

D

54.

D

56.

D

58.

59.

D

61. A

B

62.


B

D

64. A

65.

D

66. A
68.

C
1

C

60.

63.
67.

C

B


69.


70. A

C

72.

C

73. A

74.

C

75. A

76.

D

77. A

78.

D

80.

D


71.

B

79.

D

81.

C

82.

83.

C

84. A

85.

C

86.

87.

C


88.
D

89.
93.

B
D

90.

C

91.

C

C

92. A
D

94.

95. A

C

96. A


97.

D

98.

99.

D

100.

D

102.

D

101. A
103.

C

105. A

104.

C


106.

C

107.

B

108.

109.

B

110.

111.

B

112.

113.

C

C
D

116. A

D

117.

118.

119. A

B

120.

C

122.

B

123.

C

125.

126.

D

127.


128.

D

129.

130.

B

114. A

115. A

121.

C

B

2

D
B
C
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×