TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − 2 .
D. −e.
A. − .
2e
e
e
Câu 2. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
A. 8 2.
B. 16.
C. 8 3.
D. 7 3.
Câu 3. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
C. 30.
D. 8.
3
2
x
Câu 4. [2] Tìm m để giá trị lớn nhất của
√ hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8 √
C. m = ±3.
D. m = ± 3.
A. m = ±1.
B. m = ± 2.
Câu 5. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
d = 30◦ , biết S BC là tam giác đều
Câu 6. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
26
16
9
7n2 − 2n3 + 1
Câu 7. Tính lim 3
3n + 2n2 + 1
7
2
A. 0.
B. .
C. - .
D. 1.
3
3
1
Câu 8. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.
D. D = R \ {1}.
log(mx)
Câu 9. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 10. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Năm mặt.
D. Ba mặt.
Câu 11. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.
√
C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
Câu 12. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 6 mặt.
D. 3 mặt.
√
Câu 13. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
Câu 14. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
C. 6.
D. 10.
2mx + 1
1
Câu 15. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. −2.
D. 1.
Trang 1/10 Mã đề 1
Câu 16. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10
D. f 0 (0) = 10.
Câu 17. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
9
23
.
B.
.
C. − .
D.
.
A. −
100
100
16
25
Câu 18. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 2
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
24
16
48
1
Câu 20. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D. (1; +∞).
Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 10a3 .
D. 20a3 .
A. 40a3 .
B.
3
Câu 22. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 23. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 24. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 4.
C. 2.
D. 5.
!
x+1
Câu 25. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A.
.
B.
.
C.
.
D. 2017.
2017
2018
2018
Câu 26. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
Trang 2/10 Mã đề 1
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 28. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (−∞; −1).
D. (1; +∞).
Câu 29. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.
D. 8.
C. 12.
Câu 30. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 31. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
A. = =
.
B.
=
=
.
1 1
1
2
3
4
x y−2 z−3
x−2 y+2 z−3
=
=
.
D. =
=
.
C.
2
2
2
2
3
−1
Câu 32. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
Câu 33. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD
là
√
√
3
3
3
a
a
a
3
3
.
B. a3 .
C.
.
D.
.
A.
3
9
3
Câu 34. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
D. T = e + .
A. T = e + 3.
B. T = e + 1.
C. T = 4 + .
e
e
Câu 35. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 36. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 37. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4e + 2
4e + 2
4 − 2e
Câu 38. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Trang 3/10 Mã đề 1
Câu 39. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 8, 16, 32.
D. 6, 12, 24.
Câu 40. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 41. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 4.
C. 2.
D. 3.
Câu 42. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B.
.
C. 7.
D. 5.
A. .
2
2
Câu 43. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3
Câu 44. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 45. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
Câu 46. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
b a2 + c2
abc b2 + c2
a b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
tan x + m
Câu 47. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
Câu 48. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 49. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
3
3
√
a3 15
a
5
a
6
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
Câu 50. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
Câu 51. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.
D. 8 mặt.
Trang 4/10 Mã đề 1
Câu 52. Phần thực và √
phần ảo của số phức
√ z=
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
√
√
2 − 1 − 3i lần lượt √l
√
B. Phần thực là √2, phần ảo là 1 − √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 53. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
2
3
Câu 54. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 64cm3 .
D. 84cm3 .
!x
1
Câu 55. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. − log2 3.
B. log2 3.
C. − log3 2.
D. 1 − log2 3.
Câu 56. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 2400 m.
D. 6510 m.
√
√
4n2 + 1 − n + 2
bằng
Câu 57. Tính lim
2n − 3
3
A. 2.
B. +∞.
C. .
D. 1.
2
Câu 58. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 7 năm.
D. 9 năm.
log2 240 log2 15
−
+ log2 1 bằng
Câu 59. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. 3.
C. −8.
D. 4.
Câu 60. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
8
12
4
4
Câu 61. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1079
1637
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
x−1 y z+1
Câu 62. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 63. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+1
c+3
Câu 64. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. log2 13.
D. 2020.
Câu 65. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. 3.
D. −3.
Trang 5/10 Mã đề 1
Câu 66. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 5.
D. 1.
Câu 67. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
a 3
a3 3
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
4
12
Câu 68. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 69. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.
D. 9 mặt.
Câu 70. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 71. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
A. 8 3.
B. 6 3.
C.
.
D.
.
3
3
Câu 72. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có vơ số.
x+1
Câu 73. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
B. .
C. .
D. 1.
A. .
6
2
3
Câu 74. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 75. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
Câu 76. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 77. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Trang 6/10 Mã đề 1
Câu 78. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
Câu 79. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình tam giác.
D. Hình lăng trụ.
Câu 80. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
C. −1.
D. 0.
C. 9.
D. 7.
x2 − 5x + 6
x→2
x−2
B. 1.
Câu 81. Tính giới hạn lim
A. 5.
Câu 82. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
√
3
3
4a 3
a3
2a3 3
a
.
B.
.
C.
.
D.
.
A.
3
3
6
3
2
Câu 84. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 6.
D. 8.
Câu 85. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
D. {4; 3}.
Câu 86. Tìm giới hạn lim
A. 3.
2n + 1
n+1
B. 2.
C. {3; 4}.
C. 1.
D. 0.
√
Câu 87. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
A.
.
B.
.
C.
.
D.
.
36
6
6
18
Câu 88. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 89. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
.
B. un =
.
A. un =
3
5
n3 − 3n
C. un =
.
n+1
D. un = n2 − 4n.
Câu 90. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
C. 8.
D. 12.
Câu 91. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.
Câu 92. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x3 − 3x.
x
Câu 93. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
D. 2.
C. y = x4 − 2x + 1.
D. y =
C. 8.
D. 30.
x−2
.
2x + 1
Trang 7/10 Mã đề 1
Câu 94. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 95. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
1
Câu 96. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.
C. −1.
Câu 97. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.
C. 12.
D. R.
D. 1.
D. 8.
Câu 98. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≥ .
D. m ≤ .
A. m > .
4
4
4
4
2n − 3
Câu 99. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 100. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.
C. .
D. .
A.
2
2
3
Câu 101. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.
Câu 102. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 9 cạnh.
Câu 103. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. 6.
D. .
A. 9.
B. .
2
2
1
Câu 104. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. 3.
D. −3.
3
3
Câu 105. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −5.
D. −3.
Câu 106. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên đúng. C. Cả hai câu trên sai.
D. Chỉ có (II) đúng.
Trang 8/10 Mã đề 1
Câu 107. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 12.
D. 27.
Câu 108. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 16π.
D. 32π.
!
1
1
1
+ ··· +
Câu 109. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.
B. .
C. 2.
D. .
2
2
cos n + sin n
Câu 110. Tính lim
n2 + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 111. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
24
12
6
Câu 112. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
C. 30.
D. 12.
Câu 113. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
24
36
12
√
Câu 114. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
3a
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 115.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
12
√
a3 2
C.
.
2
√
a3 2
D.
.
6
d = 120◦ .
Câu 116. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 4a.
C. 2a.
D. 3a.
2
Câu 117.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.
A.
Z
C.
dx = x + C, C là hằng số.
B.
Z
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
x
√
Câu 118.√Thể tích của khối lập phương có cạnh bằng a 2
√
√
2a3 2
A.
.
B. V = a3 2.
C. 2a3 2.
3
D. V = 2a3 .
Trang 9/10 Mã đề 1
Câu 119. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√ hình chóp S .ABCD với
√
√mặt phẳng (AIC) có diện tích
2
2
2
2
a 2
a 7
11a
a 5
.
B.
.
C.
.
D.
.
A.
16
4
8
32
Câu 120. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Câu 121.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
12
2
4
√
3
D.
.
4
! x3 −3mx2 +m
1
Câu 122. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m = 0.
Câu 123. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 124. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .
C.
√
−1.
−3
√
D. (− 2)0 .
Câu 125. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Câu 126. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.
C. 24.
D. 144.
x−1
Câu 127. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 2 3.
C. 2 2.
D. 6.
Câu 128. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Câu 129. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
√
Câu 130. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 36.
D. 6.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
B
3. A
4.
B
5.
6. A
B
C
7.
9.
8.
10.
D
11. A
B
14.
15.
B
16. A
17. A
D
20. A
21.
D
22. A
23. A
24.
25.
B
26. A
27.
B
28. A
29. A
30. A
31. A
32. A
33. A
34. A
35.
B
36. A
37.
B
38.
39.
D
40.
41.
D
42. A
43.
D
B
C
D
48. A
D
50. A
52.
51. A
54.
B
55. A
57.
D
D
C
56.
D
58.
D
60. A
C
D
63. A
65.
B
46.
B
49.
61.
C
44. A
C
45.
59.
B
18.
19.
53.
D
12. A
13.
47.
B
D
62.
C
64.
C
66. A
68.
67. A
1
D
69.
71.
D
70.
72.
B
73. A
74.
75. A
76.
77. A
78.
79.
C
80. A
81.
C
82.
83.
B
85.
B
C
B
C
D
C
84. A
86.
C
87.
D
B
88. A
89. A
C
90.
91.
B
92.
93.
B
94. A
95.
96.
C
D
B
97.
B
98.
99.
B
100.
B
B
101.
D
102.
103.
D
104. A
D
105. A
106.
107. A
109.
C
111.
C
110.
112.
C
113.
B
114.
D
116. A
118.
120.
C
124.
D
115.
B
117.
B
119.
B
122.
B
D
B
121.
D
123.
D
125.
D
126.
D
127.
128.
D
129.
130. A
2
C
B
D