Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (230)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.55 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; −3; −3).
Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 10a3 .
B.
.
C. 20a3 .
D. 40a3 .
3
d = 30◦ , biết S BC là tam giác đều
Câu 3. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách


√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
13
9
26
Câu 4. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 5. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.


4n2 + 1 − n + 2

bằng
Câu 6. Tính lim
2n − 3
3
C. +∞.
D. 1.
A. 2.
B. .
2
2n − 3
Câu 7. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. +∞.
D. 0.
2n + 1
Câu 8. Tính giới hạn lim
3n + 2
1
2
3
A. 0.
B. .
C. .
D. .
2
3
2

Câu 9. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = e + .
D. T = 4 + .
e
e
0
Câu 10. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 11. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.
log3 12

Câu 12. [1] Giá trị của biểu thức 9
A. 2.
B. 24.

C. 5.

D. 6.


C. 4.

D. 144.

bằng

2
Câu 13. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.
Trang 1/10 Mã đề 1


Câu 14. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 5}.

D. {5; 3}.

Câu 15. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.


C. +∞.

B. 2.

D. 1.

Câu 16. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.

D. 3 nghiệm.

Câu 17. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

D. 4.

C. 8.

Câu 18. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Z 0
u (x)
dx = log |u(x)| + C.
D.

u(x)
Câu 19.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 1.
D. 2.
!
5 − 12x
Câu 20. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
1
Câu 21. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = 4.
Câu 22.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) − g(x))dx =


A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.

k f (x)dx = f

B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z

f (x)dx g(x)dx.

Câu 23. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 24. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.

C. 6.

D. 10.

Câu 25. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 26. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. [3; 4).
D. (1; 2).

2
2


ab.

Trang 2/10 Mã đề 1


!
3n + 2
2
Câu 27. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 4.
C. 5.
D. 2.
Câu 28. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.
C. −1.

D. 2.

Câu 29. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.

C. 6 mặt.
D. 4 mặt.
 π
Câu 30. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π
2 π4
3 π6
A. e 3 .
B.
e .
C.
e .
D. 1.
2
2
2
!
1
1
1
Câu 31. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .

B. .
C. 2.
D. +∞.
2
2
Câu 32. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
C. y = log π4 x.
1
Câu 33. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 34. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. .
D. 4.
A. .
8
4
2
Câu 35. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng

A. 3.
B. 1.
C. 2.
D. 7.
Câu 36. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
18
9
15
Câu 37. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 38.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z

C.

0dx = C, C là hằng số.

Câu 39. Hàm số y =
A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.

1
dx = ln |x| + C, C là hằng số.
Z x
xα+1
+ C, C là hằng số.
D.
xα dx =
α+1

B.

C. x = 1.

D. x = 2.

Câu 40. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).

B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

Trang 3/10 Mã đề 1


Câu 41. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
Câu 42. [1] Đạo hàm của làm số y = log x là
1
1

A.
.
B. y0 =
.
10 ln x
x ln 10

C. 6.
C. y0 =

D. 12.
ln 10
.
x

Câu 43. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 25.
C. 5.
5

1
D. y0 = .
x



D. 5.


Câu 44. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.
B. .
C. .
D.
.
3
2
2
Câu 45. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
9t
Câu 46. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vô số.
D. 2.

Câu 47. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 48. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 49. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
C. lim un = 0.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?

n2 + 1
1
B. lim un = .
2
D. Dãy số un khơng có giới hạn khi n → +∞.
a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 4.
D. 1.

Câu 50. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 7.

B. 2.

Câu 51. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
Câu 52. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.


B. +∞.

C. 2.

Câu 53. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.

D. 3.
D. x = −2.

Câu 54. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
Trang 4/10 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1

x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
Câu 55. [4-1212d] Cho hai hàm số y =

Câu 56. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
.
B. √ .
A.
n
n

C.

sin n
.
n

D.

1
.
n


Câu 57. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. 1.
C. .
D.
.
2
2
Câu 58. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 59. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 60. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.

Câu 61. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.

Câu 62. Thể tích của khối lập phương có cạnh bằng a 2

3


2
2a
A. V = a3 2.
.
B. 2a3 2.
C. V = 2a3 .
D.
3
Câu 63. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1

C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng

A. 2 2.
B. 6.
C. 2.
D. 2 3.

Câu 64. [3-1214d] Cho hàm số y =

Câu 65. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.

D. Hình lăng trụ.

Câu 66.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 1.
C. 3.
D. 2.
Câu 67. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích

hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
Trang 5/10 Mã đề 1


1

Câu 68. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = R.
D. D = (1; +∞).
log(mx)
= 2 có nghiệm thực duy nhất
Câu 69. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 70. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.


D. Khối 20 mặt đều.

Câu 71. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 + 6.9 = 0 là
A. 3.
B. 0.
C. 2.
D. 1.

Câu 72. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
x−3 x−2 x−1
x
Câu 73. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. (−∞; 2).
D. [2; +∞).
x


x

x

Câu 74. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

a3 6
a3 3
a3 3
2a3 6
.
B.
.
C.
.
D.
.
A.
9
12
4
2
Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3

2a3 3
4a3 3
a3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
Câu 76. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
1
Câu 77. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.

Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 79. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 80. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm

của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
2a
2a 3
4a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 81. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 30.
D. 8.
Câu 82. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .

C. 64cm3 .
D. 46cm3 .
Trang 6/10 Mã đề 1


Câu 83. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 0.

C. 7.

Câu 84. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. 6.

D. 9.

2

D. −5.

Câu 85. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3

3
3

a 3
a 2
a 3
A.
.
B.
.
C. a3 3.
D.
.
2
2
4
!
1
1
1
+
+ ··· +
Câu 86. Tính lim
1.2 2.3
n(n + 1)
3
A. .
B. 2.
C. 0.
D. 1.

2
Câu 87. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 88.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
12


a3 2
C.
.
2


a3 2
D.
.

6

Câu 89. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
.
C. a 2.
.
A. 2a 2.
B.
D.
2
4
x2
Câu 90. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = 1.
D. M = , m = 0.
A. M = e, m = .
e
e
Câu 91. Cho hình chóp S .ABCD

√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

3
a3
a3 3
a
3
A.
.
B.
.
C. a3 .
D.
.
3
3
9
log 2x
Câu 92. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
D. y0 = 3
.

B. y0 = 3
.
C. y0 =
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 93. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối bát diện đều.

Câu 94. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 1.

D. 2.
Trang 7/10 Mã đề 1



Câu 95. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
5
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 96.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) +C ⇒
!0
Z
C.
f (x)dx = f (x).
A.

f (u)dx = F(u) +C. B.


Z

k f (x)dx = k

Z

f (x)dx, k là hằng số.
Z
Z
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 97. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 5 mặt.

D. 3 mặt.

Câu 98. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Bốn cạnh.

Câu 99. Tứ diện đều thuộc loại
A. {3; 3}.

B. {5; 3}.

D. {3; 4}.

C. {4; 3}.

Câu 100. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 101. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 102. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
2
1
B.
.
C.
.
D. .
A. .

5
10
10
5
Câu 103. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
Câu 104. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 5%.
D. 0, 6%.
Câu 105. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a = loga 2.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a =
loga 2
log2 a
Câu 106. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?

A. 4.
B. 12.
C. 10.
D. 11.
Câu 107. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. n2 lần.
D. 3n3 lần.
Câu 108. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
8
4
12
4

Trang 8/10 Mã đề 1


Câu 109. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
6
12
24
Câu 110. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 1; m = 1.
Câu 111. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.

C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
x3 − 1
Câu 112. Tính lim
x→1 x − 1
A. −∞.
B. +∞.

C. 0.

D. 3.

Câu 113. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−1; 0).
x+2
đồng biến trên khoảng
Câu 114. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
1 − 2n
Câu 115. [1] Tính lim
bằng?
3n + 1
2
1

2
A. .
B. 1.
C. .
D. − .
3
3
3
Câu 116. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 12.
D. 18.
2
x
Câu 117. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
C.
.
D. .
A. 1.
B. .
2
2

2
2n + 1
Câu 118. Tìm giới hạn lim
n+1
A. 0.
B. 2.
C. 3.
D. 1.

Câu 119. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = (−2; 1).
2

D. D = R \ {1; 2}.

Câu 120. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1079
1728
A.
.
B.
.
C.
.
D.

.
4913
68
4913
4913
Câu 121. Tính lim
A. 0.

2n2 − 1
3n6 + n4
B. 1.

C. 2.

D.

2
.
3
Trang 9/10 Mã đề 1


Câu 122. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).

Câu 123. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1

1
A. .
B. 3.
C. − .
D. −3.
3
3
Câu 124. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
C. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
log2 240 log2 15

+ log2 1 bằng
Câu 125. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 3.
C. 1.
D. 4.
8
Câu 126. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 81.
D. 82.
x+3
nghịch biến trên khoảng

Câu 127. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 128. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 3.
C. 2e + 1.
D. 2e.
A. .
e
Câu 129. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 3.
.
B. 1.
C. 2.
D.

3
x2 − 12x + 35
Câu 130. Tính lim
x→5
25 − 5x
2
2
A. .
B. − .
C. +∞.
D. −∞.
5
5
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B


4.

5.

B

6.
D

7.

13.

10.
D
B

21.

C
B
D
C

14.
16.

B
D


18.

B

19.

D

12.

15. A
17.

B

8.

9. A
11.

C

C

20. A
D

22.


B

23. A

24. A
D

25.

26. A

27.

B

28.

B

29.

B

30.

B

31.

C


32. A

33. A

34.

35.

C

38.

D

40.
42.

37.

C

39.

C

41.

C
B


43.

44. A

46.

47. A

48.

49.

B

51.

D
B
D
B

50. A
C

53. A
55.

B


B

52.

C

54.

C

56. A

57. A

58. A

59. A

60.

B

62.

B

D

61.
63.


B

65. A

64.

D

66.

D
D

67.

B

68.

69.

B

70. A
1


71.


72.

B

C

73.

D

74.

75.

D

76.

77.

D

78.

D

79. A

80.


D

81. A

82. A
D

83.
85. A

B
C

84.

D

86.

D

87.

B

88.

B

89.


B

90.

B

91. A
93.

D

92.

D

94.

D

95.

B

96. A

97.

B


98.

C

99. A

100.

C

101. A

102.

B

104.

B

106.

B

D

103.
105.

B


107. A
109.
111.

108. A
B

110.
C

B

112.

D

113.

D

114.

D

115.

D

116.


D

117. A

118.

119. A

120. A

121. A

122.

123. A

124.

C

125. A

126.

C

127.

C


128.

129.

C

130. A

2

B
D

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×