Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (96)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.97 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
3
A.
.
B. a 3.
C.
.
D.
.
6
3
3
1
Câu 2. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3


A. (−∞; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (1; 3).
Câu 3. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.

D. 0.
un
Câu 4. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. +∞.
C. 1.
D. −∞.
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 3
a3 2
A.
.
B.

.
C.
.
D.
.
48
48
24
16
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng

√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp S .ABCD là

a 3
a3 2
a3 2
3
.
B.
.
C. a 3.
D.
.
A.
4
6
12
Câu 7. √

Biểu thức nào sau đây khơng
có nghĩa

−3
0
A. (− 2) .
B.
−1.
C. 0−1 .
D. (−1)−1 .
Câu 8. Cho số phức z thỏa mãn |z +√3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
C. |z| = 10.
A. |z| = 17.
B. |z| = 17.

D. |z| =


10.

Câu 9. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. 1.
D. e2016 .
2n − 3
Câu 10. Tính lim 2
bằng
2n + 3n + 1

A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 11. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {3; 3}.

D. {5; 3}.

C. −∞.

D. 0.

C. −3.

D. 3.

3

x −1
Câu 12. Tính lim
x→1 x − 1
A. +∞.
B. 3.
1
Câu 13. [1] Giá trị của biểu thức log √3
bằng

10
1
1
B. − .
A. .
3
3

tan x + m
Câu 14. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
Trang 1/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.

Câu 15. [3-12217d] Cho hàm số y = ln

A. xy0 = ey − 1.

Câu 16. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 17. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. 2.

D. −2.

Câu 18. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.


D. 20.

C. 12.

Câu 19. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 20. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.

C. 8.

D. 10.

Câu 21. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 24.
D. 144.
2x + 1
Câu 22. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.

D. 2.
2
x−1
Câu 23. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác

√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
A. 2 3.
B. 6.
C. 2.
D. 2 2.
Câu 24. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.

4
8
4
12
Câu 25. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −2.

D. m = −3.

0 0 0 0
0
Câu 26.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7
2

2
3

Câu 27. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ± 2.
C. m = ±3.
D. m = ± 3.
Câu 28. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.

D. 3.

1
Câu 29. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
Trang 2/10 Mã đề 1


x−3 x−2 x−1
x
+

+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. (2; +∞).
Câu 30. [4-1213d] Cho hai hàm số y =

x2
Câu 31. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = .
e
e
Câu 32. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 10.

C. 4.


D. 8.

Câu 33. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −3.
D. −6.
Câu 34. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 35. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 36. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 1; m = 1.
Câu 37. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 25.
C. 5.
D. 5.
5
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).

Câu 38. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
2
.
B. 2a 2.
.
D.
.
C.
A.
24
24
12


Câu 39. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.
!
1
1
1
Câu 40. Tính lim
+

+ ··· +
1.2 2.3
n(n + 1)
A. 0.

B. 2.

C. 12.

D. 10.

C. 1.

D.

3
.
2

Câu 41. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A. a .
B.
.

C.
.
D.
.
3
6
2
Câu 42. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + .
D. T = e + 3.
A. T = e + 1.
B. T = 4 + .
e
e
Câu 43. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. 2.

C. +∞.

Câu 44. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).


D. 3.
D. (0; −2).
Trang 3/10 Mã đề 1


9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vô số.
C. 0.
D. 2.

Câu 45. [4] Xét hàm số f (t) =

Câu 46. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 3.
C. .
D. 1.
A. .
2
2
Câu 47. Hàm số nào sau đây khơng có cực trị
1
x−2

A. y = x + .
B. y =
.
x
2x + 1

C. y = x3 − 3x.

D. y = x4 − 2x + 1.

d = 60◦ . Đường chéo
Câu 48. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
.
B.
.
C. a 6.

D.
.
A.
3
3
3
Câu 49. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.

C. 20.

D. 8.

Câu 50. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
5a3 3
a3 3
2a 3
.
B.
.
C.

.
D.
.
A.
3
3
3
2
Câu 51. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Bốn cạnh.

D. Năm cạnh.

Câu 52. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 3.

D. 1.


Câu 53. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a3 3
a3

a 3
.
B.
.
C.
.
D. a3 3.
A.
12
3
4
Câu 54. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
23
1079
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 55. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 1.

D. 3.

Câu 56. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 4/10 Mã đề 1


Câu 57. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 4.
D. 12.
Câu 58. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.

C. 4.


Câu 59. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.
Câu 60. [2] Tổng các nghiệm của phương trình 3
A. 5.
B. 6.

D. 8.
D. Hai mặt.

x2 −3x+8

= 92x−1 là
C. 8.

D. 7.

Câu 61.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
B. 2.
C. 1.
D. 2.
A. 10.
Câu 62. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối lập phương.


D. Khối tứ diện đều.

Câu 63. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 2.
C. 3.
D. 1.

Câu 64. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
a 38
3a 38
.
B.
.
C.
.
D.
.
A.
29
29

29
29
Câu 65. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 66. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 67. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD




3
3
3
a
a
3
a
3
A. a3 .
B.
.
C.
.
D.
.
3
3
9
Câu 68. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.

Câu 69. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 5/10 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

Câu 70. [12215d] Tìm m để phương trình 4
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4
Câu 71. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 11 cạnh.

C. 2.

x+ 1−x2

D. 1.



x+ 1−x2

− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .
D. m ≥ 0.
4

− 4.2

C. 9 cạnh.

D. 12 cạnh.

Câu 72. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
c a2 + b2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √

.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
0

0

0

0

0

Câu 73. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 10 mặt.
Câu 74. [2] Tổng các nghiệm của phương trình 2
A. 6.
B. −6.

D. 6 mặt.

x2 +2x

= 82−x là

C. 5.

D. −5.

Câu 75. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 76. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
A. a.
B.
.
C. .
D. .
2
3
2
Câu 77. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a


x→a

x→a

C. lim+ f (x) = lim− f (x) = a.

Câu 78. Tính lim

x→+∞

x→a

x−2
x+3

2
B. − .
3
Câu 79. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
A. 2.

D. lim f (x) = f (a).

C. 1.

D. −3.


C. {3; 3}.

D. {5; 3}.



x = 1 + 3t




Câu 80. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương


 trình là










x = −1 + 2t
x = −1 + 2t
x = 1 + 3t
x = 1 + 7t
















.
C. 
A. 
B. 
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t .
y = 1 + 4t .

















z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
Trang 6/10 Mã đề 1


Câu 81. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với


√mặt phẳng (AIC) có diện tích
2
2
2
2
a 5
a 7
11a
a 2
.
B.
.
C.
.
D.
.
A.
4
16
8
32
Câu 82. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D. V = S h.
3
2

p
ln x
1
Câu 83. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
9
9
3
3
Câu 84.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z

Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 85. [2] Phương trình log x 4 log2
A. Vơ nghiệm.

B. 3.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. 1.
D. 2.

Câu 86. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
12 + 22 + · · · + n2
Câu 87. [3-1133d] Tính lim
n3
2
A. 0.
B. .
3

C. +∞.

D.

1
.
3

Câu 88. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.

2
2
Câu 89. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
2

Câu 90. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 2 − log2 3.

D. 1 − log2 3.

Câu 91. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3

(1, 01)3 − 1
100.(1, 01)3
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Trang 7/10 Mã đề 1


Câu 92. Tính lim

2n2 − 1
3n6 + n4

A. 0.

B. 1.

C.

2
.
3

D. 2.

7n2 − 2n3 + 1

3n3 + 2n2 + 1
2
7
A. 0.
B. - .
C. 1.
D. .
3
3
Câu 94. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 24.
D. 21.
2
x −9
Câu 95. Tính lim
x→3 x − 3
A. +∞.
B. 6.
C. 3.
D. −3.
2
x − 5x + 6
Câu 96. Tính giới hạn lim
x→2
x−2
A. 1.

B. 5.
C. −1.
D. 0.
Câu 93. Tính lim

Câu 97. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. √ .
n
n

C.

1
.
n

Câu 98.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

xα dx =


xα+1
+ C, C là hằng số.
α+1

B.
Z
D.

D.

n+1
.
n

0dx = C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x

Câu 99. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 10.
x−3
Câu 100. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.
C. 1.


D. 27.

D. −∞.

Câu 101. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 102. [3-12213d] Có bao nhiêu giá trị ngun của m để phương trình

1
3|x−1|

= 3m − 2 có nghiệm duy

nhất?
A. 4.

B. 3.
C. 1.
D. 2.
x
a
a
Câu 103. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d

d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
C. P = −2.
D. P = 4.
Z

3

Câu 104. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m , 0.

D. m > 0.

Câu 105. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.

D. 9 mặt.
Trang 8/10 Mã đề 1


Câu 106. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.

C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 107. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 109. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi

ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 14 năm.
D. 11 năm.
Câu 110. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. 12.

D. 30.

Câu 111. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 4.

D. 8.

Câu 112. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = R.
2

D. D = (−2; 1).

Câu 113. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )

A. P = −21.
B. P = −10.
C. P = 21.
D. P = 10.
Câu 114. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 32.

D. S = 24.

Câu 115. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.

C.
.
D. 2a 2.
4
2
 π
Câu 116. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. 1.
B. e .
C.
e .
D.
e .
2
2
2
x+2
Câu 117. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
C. 2.

D. 3.
Câu 118. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.

D. Vô nghiệm.

d = 300 .
Câu 119. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V 3của
√ khối lăng trụ đã cho.
3

a 3
3a 3
A. V =
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
2
2
Trang 9/10 Mã đề 1


1

Câu 120. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
log 2x

Câu 121. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x ln 10
x
2x ln 10
x+3
Câu 122. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng

x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 123. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 124. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 12.

C. 8.

D. 30.

Câu 125. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2


A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
D. 3 + 4 2.
!
!

!
4x
1
2
2016
Câu 126. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
B. T = 2017.
C. T = 1008.
D. T = 2016.
A. T =
2017
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3

8a 3
a 3
4a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 128. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. −1.
D. 6.
3

2

Câu 129. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 130. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là

A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

3.

2.
D

4. A
6. A

5. A
7.
9.

8.


C

D

10. A

B

11. A
13.

C

12.
B

15. A

B

14.

C

16.

C

17.


D

18.

C

19.

D

20.

C

21.

D

22.

23. A

24.

25.
27.

B

28.

D

36.

37.

B

38. A

39.

B

40.

41.

D
B

45.

D

34.

C

35. A


D

B
C

42.

D

44.

D

46. A

47.

B

48.

49.

B

50.

51.


B

52.

53.

B

54. A

55. A

C
D
B

56.

57.

D

58.

59.

C

60.


61.

C

62.

B

65.
67.

B

32. A

33.

63.

D

30. A

31. A

43.

B

26.


C

29.

D

64.

C
B
D
C
B

66.

C
B

68.
1

D
B


69. A

70.


71. A

72.

D

74.

D

D

73.
C

75.
77.

76. A
D

C

80.

81.

C


82. A

B
C

85.

C

78.

79.
83.

B

D

84.

B

86.

B
B

87.

D


88.

89.

D

90.

C

91.

B

92. A

93.

B

94. A

95.

B

96.

C


98.

C

97.

D

99.

B

100.

B

101.

B

102.

C
C

103.

D


104.

106.

D

107.

D

108.

D

109.

D

110.

D

111.

D

112.

C


113. A

114.

C

115.

C

116.

C

117.

C

118.

C

119.

B

121.

B


D

120.
122. A

123.

124. A

125. A

126.

C

128.
130.

127.
D

129.

B

2

D
B
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×