TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C 0 D) bằng
√
√
√
√
a 3
a 3
2a 3
A. a 3.
B.
.
C.
.
D.
.
2
3
2
Z 1
6
2
3
. Tính
f (x)dx.
Câu 2. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
0
3x + 1
A. 6.
B. 2.
C. 4.
D. −1.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 3. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
3
√
3
a3 2
a
a3 3
.
B.
.
C. 2a2 2.
D.
.
A.
12
24
24
q
2
Câu 4. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
Câu 5. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng√(BCD) bằng
√
√
√
a 2
a 2
.
C.
.
D. 2a 2.
A. a 2.
B.
4
2
2
2
2
1 + 2 + ··· + n
Câu 6. [3-1133d] Tính lim
n3
1
2
A. +∞.
B. .
C. 0.
D. .
3
3
Câu 7. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 1.
Câu 8. [1-c] Giá trị biểu thức
A. 3.
D. 4.
Câu 9. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
D. f 0 (0) =
.
ln 10
!
3n + 2
2
Câu 10. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 3.
D. 5.
A. f 0 (0) = 1.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
2
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 3 .
B. 2 .
C. 3 .
2e
e
e
D.
1
√ .
2 e
Trang 1/10 Mã đề 1
Câu 12. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.
√
√
√
5 13
C. 26.
D. 2 13.
A.
.
B. 2.
13
1
Câu 13. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. 3.
C. − .
D. −3.
3
3
2n + 1
Câu 14. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. 0.
C. .
D. .
2
3
2
Câu 15. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. e2016 .
D. 1.
Câu 16. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
8
24
24
Câu 17. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.
D. −2.
Câu 18. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 2.
B. 5.
C. 3.
D. 1.
Câu 19. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −3.
D. −5.
Câu 20. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.
D. 25 m.
Câu 21. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. .
D. 9.
A. 6.
B. .
2
2
Câu 22. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 23. Phần thực và √
phần ảo của số phức
√ z=
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
√
√
2 − 1 − 3i lần lượt √l
√
B. Phần thực là √2 − 1, phần ảo là √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 24. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Trang 2/10 Mã đề 1
Câu 25. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 1.
D. 6.
Câu 26. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 27. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Z 1
Câu 28. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
B. 1.
C. 0.
A. .
2
Câu 29. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D.
1
.
4
Câu 30. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 31. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 32. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 33. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 34. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.
C. 2.
D. 1.
Câu 35. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
Trang 3/10 Mã đề 1
120.(1, 12)3
triệu.
(1, 12)3 − 1
(1, 01)3
C. m =
triệu.
(1, 01)3 − 1
A. m =
100.1, 03
triệu.
3
100.(1, 01)3
D. m =
triệu.
3
B. m =
Câu 36. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 2, 4, 8.
Câu 37. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
Câu 38. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 3.
C.
.
D. a 6.
2
2
Câu 39. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 5.
B. 9.
C. 7.
D. 0.
Câu 40. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 41. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.
C. 12.
D. 8.
log(mx)
Câu 42. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 43. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 44. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 45. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
x−1
Câu 46. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 2 3.
C. 2 2.
D. 6.
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 47. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 0.
C. −5.
D. 1.
Câu 48. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −2.
D. x = −8.
Trang 4/10 Mã đề 1
Câu 49. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√M + m
√
A. 16.
B. 8 3.
C. 8 2.
D. 7 3.
Câu 50. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
6
15
9
Câu 51. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 52. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 5.
C. −5.
2
D. 6.
Câu 53. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
x+1
bằng
Câu 54. Tính lim
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. 3.
D. .
4
3
Câu 55. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. −7, 2.
Câu 56. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
A. un =
.
B.
u
=
.
n
5n + n2
n2
C. un =
n2 + n + 1
.
(n + 1)2
D. 0, 8.
D. un =
n2 − 2
.
5n − 3n2
Câu 57. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích
√
2
2
2
2
a 5
a 2
11a
a 7
.
B.
.
C.
.
D.
.
A.
8
16
4
32
d = 60◦ . Đường chéo
Câu 58. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
2a3 6
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 59. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 5.
D. V = 6.
Câu 60. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.
C. 4.
!2x−1
!2−x
3
3
Câu 61. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. [3; +∞).
C. (−∞; 1].
√
Câu 62. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 6.
D. 6.
D. [1; +∞).
D. 4.
Trang 5/10 Mã đề 1
Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
a3
a3
4a3 3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
Câu 64. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (II) và (III).
C. Cả ba mệnh đề.
D. (I) và (III).
Câu 65. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (2; 2; −1).
√
Câu 66. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
3
6
Câu 67. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 1.
C. 2.
D. 5.
Câu 68. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.
D. Năm mặt.
Câu 69. [3-12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
1
3|x−2|
= m − 2 có nghiệm
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 70. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Câu 71. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.
C. y0 = x + ln x.
D. y0 = 1 + ln x.
Câu 72. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).
D. (2; 2).
Câu 73.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
12
4
√
a3 2
D.
.
2
√
a3 2
C.
.
6
√
Câu 74. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3
a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
12
3
Trang 6/10 Mã đề 1
Câu 75. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −4.
C. −2.
D. −7.
A.
27
1
Câu 76. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 77. Giá trị của giới hạn lim
A. −1.
B. 2.
2−n
bằng
n+1
C. 0.
D. 1.
Câu 78. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
d = 30◦ , biết S BC là tam giác đều
Câu 79. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
13
9
16
Câu 80. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 81. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 82. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 82.
B. 96.
C. 64.
D. 81.
8
x
Câu 83. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Khơng có.
D. Có hai.
Câu 84. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
Câu 85. Tính lim
x→5
2
A. − .
5
C. {3; 4}.
x2 − 12x + 35
25 − 5x
B. +∞.
C.
2
.
5
D. {5; 3}.
D. −∞.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
B. 2.
C. .
D. −1.
2
Câu 86. [2-c] Cho hàm số f (x) =
A. 1.
Câu 87. Tính lim
A. 3.
5
n+3
B. 0.
C. 1.
D. 2.
Câu 88. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Trang 7/10 Mã đề 1
1
Câu 89. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = 4.
2
Câu 90. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.
D. 3 − log2 3.
Câu 91. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.
D. 9.
Câu 92. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
=
.
B. = =
.
A. =
2
3
−1
1 1
1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
Câu 93. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 94. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 5 mặt.
D. 6 mặt.
0
Câu 95. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
.
C. 2.
D. 3.
A. 1.
B.
3
Câu 96. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối lập phương.
Câu 97. Tính lim
A. 1.
2n2 − 1
3n6 + n4
B. 0.
C. 2.
D.
2
.
3
Câu 98. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.
B. 1.
C.
.
D. .
2
2
Câu 99. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 100. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
12
24
6
Trang 8/10 Mã đề 1
Câu 101. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
Câu 102. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 5%.
D. 0, 7%.
Câu 103. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.
C. 8.
D. 20.
Câu 104. Hàm số nào sau đây khơng có cực trị
1
x−2
.
B. y = x4 − 2x + 1.
C. y = x + .
D. y = x3 − 3x.
A. y =
2x + 1
x
Câu 105. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
π
Câu 106. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 2.
√
Câu 107. Xác định phần ảo của số√phức z = ( 2 + 3i)2
√
C. 7.
D. 6 2.
A. −7.
B. −6 2.
Câu 108. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
mx − 4
Câu 109. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 67.
D. 45.
Câu 110. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 111. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + .
C. T = 4 + .
D. T = e + 1.
e
e
Câu 112. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 8.
C. 9.
D. 3 3.
Câu 113. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
x−3
Câu 114. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 1.
C. 8.
D. 30.
C. 0.
D. +∞.
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
a3 3
a3 2
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
48
24
16
48
Câu 116. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 9/10 Mã đề 1
Câu 117. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.
B. 0.
C. −∞.
un
bằng
vn
D. 1.
Câu 118. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d ⊥ P.
D. d song song với (P).
log 2x
Câu 119. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
A. y0 =
3
3
x
2x ln 10
2x ln 10
x ln 10
Câu 120. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 121. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.
C. D = (0; +∞).
3
2
Câu 122. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
B. −3 + 4 2.
C. 3 − 4 2.
A. 3 + 4 2.
D. D = R \ {1}.
√
D. −3 − 4 2.
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
6
12
4
12
√
Câu 124. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
3a 38
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 125. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.
C. 11 cạnh.
D. 9 cạnh.
Câu 126. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
C. 4.
D. 10.
Câu 127. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 1.
B. .
C. .
D. 3.
2
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3
√
a 2
a 2
a 3
A.
.
B.
.
C.
.
D. a3 3.
4
12
6
Câu 129. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 130. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 2020.
D. log2 13.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
2.
C
B
C
4. A
5.
C
6.
B
7.
C
8.
B
9.
B
10. A
11.
B
12. A
C
13.
15.
B
17.
D
C
16.
C
18. A
19. A
21.
14.
C
20.
C
22.
C
23.
D
24. A
25.
D
26.
27. A
C
28. A
29.
D
30. A
31. A
32.
33.
D
B
34.
35.
C
36.
37.
C
38.
39.
B
40.
41.
B
42. A
C
B
D
B
43.
D
44.
B
45.
D
46.
B
47.
48.
B
49. A
51.
52.
54.
53.
C
55.
B
56. A
58.
D
C
B
C
57. A
59. A
C
60.
D
61.
D
62.
D
63.
D
64. A
65. A
66.
C
67.
C
68.
C
69.
C
1
70.
71.
B
72. A
73. A
D
74.
76.
77. A
79.
C
80. A
D
84.
83.
87.
D
88.
C
B
C
91.
B
B
92.
B
93.
94.
B
95.
97.
C
98. A
B
103. A
C
B
99.
D
102.
D
104. A
105.
106. A
C
107.
D
B
108.
B
110.
B
112.
111. A
113.
D
D
114.
115. A
C
116. A
B
118. A
119.
D
120.
121. A
122.
123.
D
124.
125.
B
126. A
127.
B
128. A
129.
B
89.
90. A
96.
C
85.
C
86. A
117.
B
81.
82.
109.
C
75.
B
78.
100.
D
130.
C
2
C
B
D
D