Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (810)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.98 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 2.
D. 1.
x+1
bằng
Câu 2. Tính lim
x→+∞ 4x + 3
1
1
D. .
A. 3.
B. 1.
C. .
3
4
p
ln x
1
Câu 3. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:


x
3
8
1
8
1
A. .
B. .
C. .
D. .
3
3
9
9
Câu 4. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 5. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
log2 a
loga 2

2−n
bằng
n+1
B. −1.

Câu 6. Giá trị của giới hạn lim
A. 1.

C. 0.

D. 2.

Câu 7. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với

√mặt phẳng (AIC) có diện tích
2
2
2
2
a 2
a 7
11a
a 5
.
B.

.
C.
.
D.
.
A.
16
4
8
32
!
5 − 12x
Câu 8. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 9. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.




− 3m + 4 = 0 có nghiệm
9

C. 0 ≤ m ≤ .
D. m ≥ 0.
4
tan x + m
nghịch biến trên khoảng
Câu 11. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).

Câu 10. [12215d] Tìm m để phương trình 4 x+
3
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2

− 4.2 x+

1−x2

Câu 12. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).

B. R.
C. (0; 2).

D. (2; +∞).
Trang 1/10 Mã đề 1


Câu 13.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z

( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 14. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).

1
B. lim √ = 0.
n
n
D. lim q = 1 với |q| > 1.

Câu 15. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {5; 3}.

D. {4; 3}.

Câu 16. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2

a 2
B.
D.
.
C. a 2.
.
A. 2a 2.
4
2
Câu 17. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
log7 16
Câu 18. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. −2.
C. 2.
D. 4.
Câu 19. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.


C. Cả hai đều đúng.

D. Cả hai đều sai.

Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
48
24
16
48
Câu 21.
Z Các khẳng định nào sau
Z đây là sai?

Z
Z
A.
Z
C.

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

f (u)dx = F(u) +C.

Câu 22. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; +∞).

D. (4; 6, 5].

Câu 23. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

D. Khối lập phương.


C. Khối tứ diện đều.

Câu 24. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. (1; 2).

D. [−1; 2).

Câu 25. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Trang 2/10 Mã đề 1


Câu 26. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
C 20 .(3)20
B. 50 50 .
C. 50 50 .
D. 50 50 .

A. 50 50 .
4
4
4
4
Câu 27. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 72.

D. 7, 2.

Câu 28. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
6
36
12
24
Câu 29. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. +∞.

C. 1.

D. 3.

Câu 30. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.

Câu 31. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 32. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
C. 8.
D. 6.
x−2 x−1
x
x+1
Câu 33. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−∞; −3).
D. (−3; +∞).
Câu 34. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.

B. −9.
C. −5.
D. −15.
π
Câu 35. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 3 3 + 1.
C. T = 2.
D. T = 4.
Câu 36. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≤ 0.
C. − < m < 0.
D. m ≥ 0.
4
4
Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
4a 3

2a 3
a3
a3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Trang 3/10 Mã đề 1


Câu 38. Tính lim
x→2

A. 2.

x+2
bằng?
x
B. 0.

C. 3.


D. 1.

Câu 39. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
.
B. a 3.
C. 2a 6.
D.
2
x2 − 5x + 6
Câu 40. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.
C. −1.
D. 0.
Câu 41. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.

C. 8.

D. 6.


Câu 42. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 220 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 43. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24

24
8
48
!
3n + 2
2
Câu 44. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.
D. 2.
Câu 45. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.
C. 1.

D. 2.

Câu 46. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
9
2
A. .
B.
.

C.
.
D. .
5
10
10
5
Câu 47. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.
Câu 48.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
C.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z

Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 49. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 2.

C. 0.

D. 1.
Trang 4/10 Mã đề 1


Câu 50. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
5
7
A.
; 0; 0 .
B.
; 0; 0 .
C.

; 0; 0 .
D. (2; 0; 0).
3
3
3
Câu 51. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.
C. y = log π4 x.

D. y = loga x trong đó a =


3 − 2.

Câu 52. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.

D. m = −3.

Câu 53. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.

D. 8 mặt.

Câu 54. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là

3

a3 3
2a3 3
a 3
3
.
B.
.
C. a 3.
D.
.
A.
6
3
3
Câu 55. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.
D. 25 m.
2x + 1
Câu 56. Tính giới hạn lim

x→+∞ x + 1
1
A. 1.
B. −1.
C. 2.
D. .
2
Câu 57. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Khơng có.
C. Có vơ số.
D. Có một.
Câu 58. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 59. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).

C. Cả ba mệnh đề.


7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
A. 0.
B. .
C. 1.
3
Câu 61. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.

D. (I) và (II).

Câu 60. Tính lim

2
D. - .
3
D. {3; 3}.
Trang 5/10 Mã đề 1


Câu 62. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
C. y0 = x + ln x.
Z 2
ln(x + 1)

Câu 63. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 0.

D. y0 = 1 − ln x.

D. 1.

Câu 64. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 65. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3

a
a3 2
3
a3 3
D.

.
B.
.
C. 2a2 2.
.
A.
12
24
24
9x
Câu 66. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
C. −1.
D. 2.
A. 1.
B. .
2
1
Câu 67. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = ey − 1.

D. xy0 = −ey − 1.
5
Câu 68. Tính lim
n+3
A. 0.
B. 1.
C. 3.
D. 2.
Câu 69. [1] Đạo hàm của hàm số y = 2 x là

1

1
.
x
ln 2
Câu 70. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

2 x . ln


.

D. y0 =

Câu 71. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
Câu 72. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

C. 5.

D. 3.

Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 2
a 3
a 3
.
B.

.
C.
.
D. a3 3.
A.
2
4
2
2
2n − 1
Câu 74. Tính lim 6
3n + n4
2
A. 1.
B. .
C. 2.
D. 0.
3
Câu 75. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. e.
D. 1.
Câu 76. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .
D. −2e2 .
Trang 6/10 Mã đề 1



Câu 77. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 27cm3 .
D. 46cm3 .
Câu 78. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
Câu 79. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2

C. {4; 3}.
C. un =

1 − 2n
.
5n + n2


D. {3; 3}.
D. un =

n2 − 2
.
5n − 3n2

Câu 80. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.
D. 13.

Câu 81. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 64.
D. 62.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 82. Tìm m để hàm số y =
x+m
A. 45.
B. 34.
C. 67.
D. 26.
Câu 83. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±3.

C. m = ±1.
D. m = ± 2.
Câu 84.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
.
B.
.
C.
.
D. .
A.
2
12
4
4
1
Câu 85. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 86. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!

un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 87. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.
C. log2 13.
D. log2 2020.
x+1
bằng
Câu 88. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
6

2
3
Câu 89. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.

D. 1.
D. Một mặt.

Câu 90. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Trang 7/10 Mã đề 1


1 − 2n
Câu 91. [1] Tính lim
bằng?
3n + 1
1
A. .
B. 1.
3
Câu 92. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.


C.

2
.
3

C. 30.

2
D. − .
3
D. 20.

[ = 60◦ , S O
Câu 93. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.

19
19
17
un
Câu 94. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 95. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. Khối tứ diện đều.

Câu 96. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.

D. Khối bát diện đều.
D. Vô nghiệm.

Câu 97. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng

d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (3; 4; −4).
Câu 98. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
a3
a
3
a
3
A.
.
B. a3 .
C.
.
D.
.
3
6
2

Câu 99. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.

C. 5.

D. 8.

Câu 100. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.

B. 3.

C. 2e.

D.

2
.
e

log 2x
Câu 101. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
.

B. y0 =
.
C. y0 = 3
.
D. y0 =
.
A. y0 = 3
3
2x ln 10
x
x ln 10
2x3 ln 10
x−1
Câu 102. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 6.
B. 2.
C. 2 3.
D. 2 2.
3
2
Câu 103. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
B. −3 − 4 2.
C. 3 + 4 2.

A. 3 − 4 2.
!2x−1
!2−x
3
3
Câu 104. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [1; +∞).

Câu 105. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.

C. 5.


D. −3 + 4 2.

D. [3; +∞).
D. 4.
Trang 8/10 Mã đề 1


Câu 106. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).

B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).
Câu 107.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
dx = x + C, C là hằng số.

A.
Z
C.

0dx = C, C là hằng số.

xα+1
B.
x dx =
+ C, C là hằng số.
α+1
Z
1
dx = ln |x| + C, C là hằng số.
D.
x
α

Câu 108. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.

B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 109. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.

C. 4.

D. 2.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.
6
Câu 111. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1

f (x)dx.

Câu 110. Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

0

A. 2.

B. 4.

C. 6.

√3
Câu 112. [1-c] Cho a là số thực dương .Giá trị của biểu thức a : a2 bằng
5
5
7
A. a 3 .
B. a 8 .
C. a 3 .

D. −1.

4
3

2

D. a 3 .
3a

Câu 113. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a 2
a
a
2a
.
B.
.
C. .
D. .
A.
3
3
3
4
Câu 114. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n2 lần.
D. n lần.
Câu 115. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.

C. D = R \ {1}.


D. D = R.

Câu 116. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

C. 4.

D. 8.

Câu 117.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
5
4
A.
.
B.
.
3
e

!n
5
C. − .
3

!n

1
D.
.
3

Câu 118. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
Câu 119. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 5 mặt.

1
D. V = S h.
2
D. 4 mặt.
Trang 9/10 Mã đề 1



Câu 120. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 64.
D. 62.

Câu 121. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
Câu 122. Biểu thức nào sau đây√khơng có nghĩa
−3
−1.
A. (−1)−1 .
B.

C. 0−1 .


D. (− 2)0 .

Câu 123. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.

Câu 124. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



a 38
3a

3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
1 + 2 + ··· + n
Câu 125. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 1.
D. lim un = 0.
Câu 126. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 6, 12, 24.
B. 8, 16, 32.

C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD


3
3
10a
.
D. 40a3 .
A. 20a3 .
B. 10a3 .
C.
3
Câu 128. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 4.
D. 0, 3.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
Câu 129. [4] Xét hàm số f (t) = t
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 2.
C. 0.

D. 1.
Câu 130. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.

C

4. A

5.


D

7.

6.

9.

B

10. A

11.

B

12.
C

15. A
17.

D

C

14.

D


16.

D

18. A

19.

B

20. A

21.

B

22.

23.

B

8. A

C

13.

D


D

24.

D
B

25.

B

26. A

27.

B

28.

C

30.

C

32.

C


29. A
C

31.
33. A

34. A

35.

D

36. A

37. A

38. A

39. A

40.

C

42.

C

44.


C

46.

C

41.

D

43. A
45.
47.

D

48. A

B

49.

C

50.

51. A
53.

52. A

54.

B

55.

C

59.

D
B

67.

D

60.

D

64.
66. A

B

68. A

C
1


C

58.
62.

63. A
65.

B

56.

57. A
61.

B

B
C


70.

69. A
71.

B

72. A


73.

C

74.

75.

C

76. A

77.

C

78. A

79.

C

80. A

81.

D

82.


83.

D

84.

85.

B

87.
89.

86.

B
D

91.

B
C
B

90.

C

92.


C

94.

C

95.

B

96.

97.

B

98.

99.

B

100.

101.

D

88. A


C

93.

D

C

B
C
D
B

102.

C
C

103.

D

104.

105.

D

106. A


107.

B

108.

109.

B

110.

D

111.

B

112.

D

113. A

114.

B
B


115.

D

116.

117.

D

118.

119.

D

120.

121. A

122.

123.
125.

C

C
D
C


124. A
126. A

B

128.

127. A
129.

B

B

130.

2

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×