Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (700)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.86 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
B. a 2.
C.
.
D.
.
A. a 3.
3
2
Z 2
ln(x + 1)
Câu 2. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1


A. 1.
B. −3.
C. 3.
D. 0.
Câu 3. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
4
2
8
Câu 4. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 5%.
D. 0, 8%.
Câu 5.
Z [1233d-2] Mệnh đề
Z nào sau đâyZsai?
[ f (x) − g(x)]dx =

A.
Z
B.


[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 1.


Câu 6. [1-c] Giá trị biểu thức
A. 3.

Câu 7. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. Không tồn tại.
C. 13.
Câu 8. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim qn = 1 với |q| > 1.

D. 4.
D. 0.

1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).

B. lim

Câu 9. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Khơng có.
D. Có một.
1


Câu 10. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = (1; +∞).

D. D = R \ {1}.

Câu 11. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Trang 1/10 Mã đề 1


Câu 12. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 13. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 6, 12, 24.
A. 8, 16, 32.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
Câu 14. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng

rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 11 năm.
D. 12 năm.

Câu 15. √
Thể tích của khối lập phương có cạnh bằng a 2
3


2a 2
D. V = a3 2.
A.
.
B. V = 2a3 .
C. 2a3 2.
3
1
Câu 16. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 1.
D. 2.
3a
, hình chiếu vng

Câu 17. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
a
2a
A.
.
B. .
C. .
D.
.
3
4
3
3
π
Câu 18. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2.
1

Câu 19. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 20. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
6
9
15

Câu 21. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã


√ cho là


3
πa 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
3
6
Câu 22. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.

B.
.
C. a 2.
D. 2a 2.
2
4
Câu 23. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (−∞; 1).

D. (0; 2).
Trang 2/10 Mã đề 1


Câu 24. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 25. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 30.

D. 8.

Câu 26. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
x+3
Câu 27. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vơ số.
C. 1.
D. 2.
2
Câu 28. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| =

√4
5.

Câu 29. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .

D. 160 cm2 .
Câu 30. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 31. Hàm số nào sau đây khơng có cực trị
1
A. y = x3 − 3x.
B. y = x + .
x

C. y =

x−2
.
2x + 1

Câu 32. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.

D. y = x4 − 2x + 1.
D. Năm mặt.

Câu 33. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5

D. − < m < 0.
A. m ≥ 0.
B. m ≤ 0.
C. m > − .
4
4
Câu 34. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
12
4
6
12
Câu 35. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?

A. (−∞; −1).
B. (−1; 1).
C. (−∞; 1).

D. (1; +∞).

Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 2
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
16
24
48
48
Câu 37. Nhị thập diện đều (20 mặt đều) thuộc loại

A. {3; 4}.
B. {3; 5}.
C. {5; 3}.

D. {4; 3}.

x+2
Câu 38. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. Vô số.
D. 1.
Trang 3/10 Mã đề 1


Câu 39.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).


x2 + 3x + 5
Câu 40. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. − .
D. 1.
4
4
Câu 41. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.
Câu 42. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.

C. 12 cạnh.

D. 10 cạnh.

Câu 43. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.

C. m ≥ 3.
D. m < 3.
Câu 44. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
2

2

sin x
Câu 45.
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất √
√ =2
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 46.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 1.
C. 2.
D. 2.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
A. 0.
B. .
3
Câu 48. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

Câu 47. Tính lim

C. 1.

2
D. - .
3

C. {5; 3}.

D. {3; 3}.

Câu 49. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 50. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
Trang 4/10 Mã đề 1


Câu 51. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
1
Câu 52. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 53. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −2.

D. m = −3.

Câu 54. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt

phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 55. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 56. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 20 .(3)20
C 40 .(3)10

A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 57. Biểu thức nào sau đây √
khơng có nghĩa

−3
−1
A. (−1) .
B.
−1.
C. 0−1 .
D. (− 2)0 .
x2 − 5x + 6
Câu 58. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.
C. 1.
D. 5.
Câu 59. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).

C. (2; 4; 4).
D. (2; 4; 6).
Câu 60. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 61. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
4a 3
8a 3
8a 3
A.

.
B.
.
C.
.
D.
.
9
9
3
9
Câu 63. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 6510 m.
D. 1134 m.
Câu 64. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. −2.
B. 2.
C. − .
2
Câu 65. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 30.

D.


1
.
2

D. 10.
Trang 5/10 Mã đề 1


Câu 66. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
2a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 67. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
C. 30.

D. 8.
Câu 68. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 69. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 16.
D. 8 3.
Câu 70. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. 5.
D. .
2
2
x+1
Câu 71. Tính lim
bằng
x→+∞ 4x + 3
1

1
D. .
A. 3.
B. 1.
C. .
4
3
Câu 72. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 73. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
Câu 74. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.

D. Vô nghiệm.

Câu 75. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −5.
C. x = −2.

D. x = −8.


Câu 76. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.

D. 9 mặt.

Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 2
a 3
A.
.
B.
.
C. a3 3.
D.
.
4
2
2
!

3n + 2
Câu 78. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 5.
C. 2.
D. 4.
Câu 79. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
Câu 80. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n

D. {5; 3}.

B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).
Trang 6/10 Mã đề 1


Câu 81. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng

lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 9 năm.
D. 8 năm.
Câu 82. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 10.
D. ln 4.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 83. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
Câu 84. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.

C. y0 = 1 + ln x.

D. y0 = 1 − ln x.

Câu 85. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.


A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.

Câu 86. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vô số.
D. 62.
Câu 87. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 3.
D. 1.
2
2
Câu 88. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y

Pmin của P = x√+ y.



2 11 − 3
18 11 − 29
9 11 + 19
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
21
9
9
log7 16
Câu 90. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. 2.
C. −2.
D. 4.

Câu 89. [12210d] Xét các số thực dương x, y thỏa mãn log3


Câu 91. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 4.
C. 11.
D. 10.
!x
1
Câu 92. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. log2 3.
D. − log2 3.
Câu 93. Hàm số y = x +
A. −2.

1
có giá trị cực đại là
x
B. −1.

C. 2.

D. 1.

Câu 94. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √


a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
12
4
8
4
Trang 7/10 Mã đề 1


Câu 95. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 4.

1
3|x−1|

C. 1.


= 3m − 2 có nghiệm duy

D. 2.

x

9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 1.
B. .
C. −1.
D. 2.
2
2n + 1
Câu 97. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. 0.
C. .
D. .
3
2
2
Câu 96. [2-c] Cho hàm số f (x) =


Câu 98. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 91cm3 .
D. 84cm3 .
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 99. [3-1214d] Cho hàm số y =
x+2
tam giác
√ có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
B. 2.
C. 2 2.
D. 6.
A. 2 3.
x2
Câu 100. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = 0.
D. M = , m = 0.
A. M = e, m = 1.
B. M = e, m = .
e
e

Câu 101. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
Câu 102. Giá trị lớn nhất của hàm số y =
A. −2.

B. 1.

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. −5.
D. 0.

Câu 103. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
.
B.
.
C.
.
A.
c+2
c+1

c+3

D.

3b + 3ac
.
c+2

Câu 104. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
6
36
24
12
Câu 105. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
!
1
1
1
Câu 106. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
D. 2.
2
2
Trang 8/10 Mã đề 1



Câu 107. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 3.
e
Câu 108. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.

D. 2e.

D. Không tồn tại.

tan x + m
nghịch biến trên khoảng
Câu 109. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 110. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=

=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 111. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 112. Tính lim
A. 1.

2n − 3
bằng
+ 3n + 1
B. 0.

2n2

C. +∞.

D. −∞.


Câu 113. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(−4; 8).
C. A(4; 8).
D. A(4; −8).


Câu 114. Tìm giá trị lớn nhất của hàm

√ số y = x + 3 + √6 − x
A. 3.
B. 2 + 3.
C. 2 3.
D. 3 2.
Câu 115. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + .
C. T = e + 3.
D. T = e + 1.
A. T = 4 + .
e
e
q
Câu 116. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].

B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 117. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 118. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.

C. 8.

D. 12.

Câu 119. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 120. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.


C. Khối tứ diện đều.

D. Khối 12 mặt đều.
Trang 9/10 Mã đề 1


d = 60◦ . Đường chéo
Câu 121. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 122. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường

thẳng S B bằng

a
a 3
a
A. .
B. a.
C.
.
D. .
2
2
3
Câu 123. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
.
B.
.

C.
.
D.
.
A.
4
12
12
6
Câu 125. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − .
D. − 2 .
2e
e
e
x
Câu 126. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 =
.
B. y0 = x
.
C. y0 = 2 x . ln 2.
D. y0 = 2 x . ln x.

ln 2
2 . ln x
Câu 127. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
2a 3
2a
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 128. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 20.
D. 12.

Câu 129. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 216 triệu.
D. 210 triệu.
Câu 130. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
B.
.
C. 2.
A. .
2
2

D. 1.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


D

3. A

2.

B

4.

B
B

5.

D

6.

7.

D

8.

C

10.


C

9. A
11.

D

12.

C

13.

D

14.

C

16.

C

15.

C

17.

D


18.

C

19.

D

21.

C

23.

22. A
D

24.

25.

26. A

D
B

27. A

28.


D

29. A

30.

D

31.

C

33.

C

32.

B

34. A
36.

D

38. A

35.


B

37.

B

39.

B

40.

C

42.

D

43.

C

44.

D

45. A
47.

D


46.

B

48.

B

49. A

50.

D

51. A

52.

D

53.

54. A

C
D

55.
57.


56.
58.

C

59.

D

61. A
63.
65.

C
B

60.

D

62.

D

64. A

C
B


66. A

67.

C

68. A

69.

C

70.
1

D


71.

72.

C

B

73.

D


74.

75.

D

76.

D

78.

D

80.

D

77.

B

79.

D

81.

C


C

82. A

83. A

C

84.

85.

86.

D

87. A

88.

89. A

90. A

91. A

92.

93. A


94.
C

95.

D
B
D
C

96. A

97. A

98. A

99. A

100.
C

101.
103.

D

C

102.


D

104.

D

105.

C

106.

D

107.

C

108.

D
D

109.

B

110.

111.


B

112.

113.

C

114.

115.

C

116.

117.

C

118. A

119. A

B
D
B

120.


B

122.

B

123. A

124.

B

125. A

126.

C

128.

C

130.

C

121.

127.


B

C

129. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×