Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (530)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.97 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 23.
D. 21.
Câu 2. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
.
A. .
n
n

C.

sin n
.
n


1
D. √ .
n

Câu 3. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B.
.
C. a 3.
D. 2a 6.
A. a 6.
2
Câu 4. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (−1; −7).
D. (0; −2).
2x + 1
Câu 5. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. −1.
D. 2.

2
Câu 6. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.
C. .
D. .
A.
2
3
2

Câu 7. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 4.
C. 6.
D. 36.
d = 300 .
Câu 8. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.

a 3
3a3 3
.
B. V =

.
C. V = 3a3 3.
D. V = 6a3 .
A. V =
2
2
Câu 9. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. 3n3 lần.
D. n lần.
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
4
6
12
12

Câu 11. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

Câu 12. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.

D. 6 mặt.

Câu 13. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b


Trang 1/10 Mã đề 1


C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b

x2 + 3x + 5
Câu 14. Tính giới hạn lim
x→−∞
4x − 1
1
A. − .
B. 1.
4


4n2 + 1 − n + 2
Câu 15. Tính lim
bằng
2n − 3
A. +∞.
B. 1.

D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b


C. 0.

D.

1
.
4

3
.
2
Câu 16. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5

x+1
Câu 17. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. .
D. 3.
4
3
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 18. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Câu 19. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 6.
D. 4.
C. 2.


D.

Câu 20. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên sai.

Câu 21. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. − .
C. −e.
e
e
3
2
Câu 22. Giá√trị cực đại của hàm số y =

√ x − 3x − 3x + 2

A. −3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.

D. Cả hai câu trên đúng.
D. −

1
.
2e


D. 3 + 4 2.

Câu 23. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
Câu 24. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 25. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x

.
B. y0 =
.
2 . ln x
ln 2

C. y0 = 2 x . ln x.

D. y0 = 2 x . ln 2.
Trang 2/10 Mã đề 1


Câu 26. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 27. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.

C. 4.

D. 6.

1
Câu 28. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.

A. −3 ≤ m ≤ 4.
B. m = −3.
C. m = −3, m = 4.
D. m = 4.


Câu 29. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là √2, phần ảo là 1 − √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 30. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
.

B.
.
C.
.
D.
.
A.
36
24
6
12
Câu 31. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.

C. 12.
D. 8.

Câu 32. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 63.
C. 64.
D. 62.
Câu 33. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.

B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 34. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.
2
2
Câu 35. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.

D. m > 0.

Câu 36. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
Câu 37. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền

ra.
A. 220 triệu.
B. 212 triệu.
C. 216 triệu.
D. 210 triệu.
Trang 3/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.

Câu 38. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 39. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
D.

.
B.
.
C. a 3.
.
3
2
2
x+2
Câu 40. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vô số.
 π
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. 1.
B. e .
e .
e .
C.

D.
2
2
2
Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).

C. Cả ba mệnh đề.

D. (II) và (III).

0

Câu 43. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 44. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7

A. 6.
B. 9.
C. .
D. .
2
2

Câu 45. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 46. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng

thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
log 2x
Câu 47. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10
2x ln 10
Câu 48. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.

B. Vô nghiệm.
C. 3.
D. 1.
Câu 49. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Trang 4/10 Mã đề 1


Câu 50. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 40 .(3)10
C 10 .(3)40
C 20 .(3)20
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 51. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.


C. 12.

D. 8.

Câu 52. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 12.
D. ln 10.
Câu 53. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
3
3

a
a
a
3
2
3
A. a3 3.
.
C.
.
D.

.
B.
2
2
4
Câu 54. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.

B. 5.

Câu 55. Dãy số
!n nào có giới hạn bằng 0?
−2
A. un =
.
B. un = n2 − 4n.
3

C.


a

5

bằng

1
.
5


n3 − 3n
C. un =
.
n+1


D.

5.

!n
6
D. un =
.
5

Câu 56. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a3 2
a3 3
a 3

.
B.
.
C.
.
D.
.
A.
24
48
16
48
Câu 58. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 5.

C. 7.

D. 0.

Câu 59. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.

D. 102.016.000.
log7 16
Câu 60. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −2.
B. −4.
C. 2.
D. 4.


Câu 61.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6√− x
A. 3 2.
B. 2 + 3.
C. 2 3.
D. 3.
x
Câu 62. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
A. .
B.
.
C. .
D. 1.

2
2
2

Câu 63. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. Một mặt.
Trang 5/10 Mã đề 1


Câu 64.
Z Trong các khẳng định sau, khẳng định nào sai? Z

1
dx = ln |x| + C, C là hằng số.
Z x
xα+1
D.
xα dx =
+ C, C là hằng số.
α+1

dx = x + C, C là hằng số.

A.
Z
C.


B.

0dx = C, C là hằng số.

Câu 65. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 66. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 25 m.
D. 387 m.
Câu 67. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = −21.
D. P = 21.
2

Câu 68. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.

C. 5.

D. 4.

Câu 69. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.

D. Khơng tồn tại.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.

Câu 70. [3-1226d] Tìm tham số thực m để phương trình
B. m < 0.

A. m ≤ 0.

Câu 71. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
!
5 − 12x

Câu 72. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
x2 − 5x + 6
x→2
x−2
B. 5.

Câu 73. Tính giới hạn lim
A. 0.

C. 1.

D. −1.

Câu 74. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
1
C. lim = 0.
n

B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n
!

3n + 2
2
Câu 75. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
x2 − 12x + 35
Câu 76. Tính lim
x→5
25 − 5x
A. +∞.

B. −∞.

C.

2
.
5

2
D. − .
5

Câu 77. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.

B. 3.
C. −6.
D. −3.
Trang 6/10 Mã đề 1


2n2 − 1
Câu 78. Tính lim 6
3n + n4
2
A. .
B. 2.
3
1 − 2n
Câu 79. [1] Tính lim
bằng?
3n + 1
2
A. 1.
B. − .
3
Câu 80. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.

C. 0.

C.

D. 1.


2
.
3

D.

C. y0 = x + ln x.

1
.
3

D. y0 = 1 − ln x.

Câu 81. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.
B.
.
C. 2a 2.
D. a 2.
A.
4

2

Câu 82. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
D. Vơ nghiệm.
Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
8
24
48
24

!
!
!
1
2
2016
4x
Câu 84. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2016.
A. T = 2017.
B. T = 1008.
C. T =
2017
1
Câu 85. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
2


2

sin x
Câu 86.
+ 2cos x √
lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
A. 2 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.

Câu 87. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 88. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.

n−1
Câu 89. Tính lim 2
n +2
A. 2.
B. 3.
C. 1.
D. 0.
Câu 90. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Trang 7/10 Mã đề 1


Câu 91. Tính lim
x→2

A. 2.

x+2
bằng?
x
B. 3.

C. 0.

D. 1.


Câu 92. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {4; 3}.

D. {3; 4}.

Câu 93. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).

D. (4; 6, 5].

Câu 94. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

D. Khối bát diện đều.

C. Khối 12 mặt đều.

Câu 95. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :

=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
3
4
2
3
−1
x y z−1
x−2 y+2 z−3
C. = =
.
D.
=
=

.
1 1
1
2
2
2
Câu 96. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 97. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Năm cạnh.
tan x + m
nghịch biến trên khoảng
Câu 98. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).

Câu 99. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




a 38
3a
3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 100. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e−2 + 2; m = 1.
Câu 101. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 102. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 68.
B. 5.
C. 34.
D.
.
17
Câu 103. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C.
.
D. 1.
2
2
Câu 104. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 105. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 4 mặt.


D. 10 mặt.
Trang 8/10 Mã đề 1


1

Z

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

Câu 106. Cho
0

1
1
A. .
B. .
C. 1.
4
2
Câu 107. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).

D. (−∞; 2).

Câu 108. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.


D. 10.

C. 6.

Câu 109. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lập phương.

D. 0.

D. Hình lăng trụ.

Câu 110. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 111. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là

A. 2.
B. 1.
C. 3.

D. 0.

Câu 112. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
.
B. 26.
A.
C. 2.
D. 2 13.
13
Câu 113. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 3).
D. (2; 4; 4).
1 − n2
bằng?
Câu 114. [1] Tính lim 2
2n + 1
1

1
A. .
B. − .
3
2
x2 − 3x + 3
Câu 115. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 1.

C.

1
.
2

C. x = 0.

D. 0.

D. x = 2.

Câu 116. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.

Câu 117. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2

Câu 118. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
2

Câu 119. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 2 .

B. √ .
C. 3 .
e
e
2 e
Câu 120. Tính lim

x→+∞

A. −3.

x−2
x+3
B. 2.

C. 1.

D.

1
.
2e3

2
D. − .
3
Trang 9/10 Mã đề 1


Câu 121. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.

Tính f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.
Câu 122. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 16 m.
D. 24 m.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 123. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 4.
C. 2.
D. 1.

Câu 124. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vô số.
D. 62.
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √



a3 3
2a3 3
a3 3
3
A. a 3.
.
C.
.
D.
.
B.
3
6
3
Câu 126. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −1.
D. m = −2.
Câu 127. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.

Câu 128. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là



a3 3
a3
a3 3
3
A.
C.
.
B. a 3.
.
D.
.
3
4
12
Câu 129. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. m ≥ 0.
D. − < m < 0.
4
4
1
Câu 130. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.

B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.
D

5.
7.

B

9.

B

6.


B
D
B

8. A
10.

C

11. A

13.

14. A

15.

B

16. A

17.

B

19.

B


C

18.
20.

D

22. A
24.
26.

D
B
C

28.

21.

D

23.

D

25.

D

27.


B

29.

B

30.

D

31. A

32.

D

33.

34.

C

37.

38. A

41.

C


42. A

C

43. A

44.

C

45.

46.

C

47. A

48. A

49.

50. A

51.

52. A

53.


54. A

55. A

56.

B
B
C
B

57.

C

58. A

59.

D
B

61. A

B

62.

D


63. A

64.

D

65. A

66. A
68.

B

39. A

40.

60.

D

35. A

B

36.

D


67.
D

69.
1

C
D


70.

D
C

72.
74. A

71.

D

73.

D

75. A
D

76.


C

77.

78.

C

79.

B

81.

B

80.

B

82. A
84.

B

86. A
88.

D


90. A
92.

83.

D

85.

D

87.

D

89.

D

91. A
93.

B

94.

C

95.


C
C

96.

D

97.

98.

D

99. A

100.

D

101.

B

102.

D

103.


C
B

104.

B

105. A

106.

B

107.

B

109.

B

108. A
110.

D

111.

112. A
114.


B

116.
118.

D

113.

B

115.

B
C

117.
119. A

B

120.

C

121.

122.


C

123. A

124.

D

125.

126.

D

127.

128. A
130.

D

129.
D

2

B
B
C
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×