TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
log2 a
loga 2
x2
Câu 2. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Câu 3. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.
D. Hai mặt.
Câu 4. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 5. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. 3.
C. .
D. .
2
2
Câu 6. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
! x3 −3mx2 +m
1
nghịch biến trên khoảng
Câu 7. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m = 0.
Câu 8. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 9. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 + ln x.
D. y0 = 1 − ln x.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 10. [3-1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.
B. m < 0 ∨ m = 4.
√
Câu 11. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
Trang 1/10 Mã đề 1
Câu 12. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −7.
C. −4.
D. −2.
A.
27
√
Câu 13. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 63.
D. 62.
log 2x
Câu 14. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
1
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
A. y0 = 3
3
3
2x ln 10
x
2x ln 10
x ln 10
Câu 15. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
24
6
Câu 16. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m < .
D. m ≤ .
4
4
4
4
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 17. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +
√ y.
√
√
√
18 11 − 29
2 11 − 3
9 11 − 19
9 11 + 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
21
3
9
9
Câu 18. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).
C. (0; +∞).
D. (−∞; 2).
x+2
bằng?
Câu 19. Tính lim
x→2
x
A. 0.
B. 2.
C. 3.
D. 1.
Câu 20. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
C. 6.
D. 8.
Câu 21. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 4.
D. V = 5.
Câu 22. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
12
8
4
4
Câu 23. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 8%.
D. 0, 5%.
Câu 24. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 25. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
6
12
Trang 2/10 Mã đề 1
1
Câu 26. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = (1; +∞).
4x + 1
bằng?
x→−∞ x + 1
B. 2.
D. D = R.
Câu 27. [1] Tính lim
A. −4.
C. 4.
Câu 28. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e
D. −1.
D. m =
1 − 2e
.
4e + 2
Câu 29. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
5
25
3
Câu 30. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 31. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 2.
C. 7.
D. 1.
Câu 32. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 33. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
D. 48cm3 .
√
√
Câu 34. Phần thực và √
phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
B. Phần thực là √2 − 1, phần ảo là √3.
A. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 35. Tính lim
x→1
A. 0.
x3 − 1
x−1
B. +∞.
C. −∞.
D. 3.
Câu 36. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
7
5
A.
; 0; 0 .
; 0; 0 .
; 0; 0 .
B.
C.
D. (2; 0; 0).
3
3
3
Câu 37. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
9
18
6
Câu 38. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.
C. 8.
Câu 39. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (1; +∞).
D. 12.
D. (−∞; 1).
Câu 40. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 3/10 Mã đề 1
Câu 41. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
D. √
.
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
!2x−1
!2−x
3
3
Câu 42. Tập các số x thỏa mãn
≤
là
5
5
A. [3; +∞).
B. (−∞; 1].
C. (+∞; −∞).
D. [1; +∞).
0 0 0 0
0
Câu 43.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
.
B.
.
C.
.
D.
.
A.
2
7
2
3
Câu 44. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
2
x − 12x + 35
Câu 45. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. −∞.
C. .
D. − .
5
5
Câu 46. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √
√
3
a 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
9
2
Câu 47. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 48. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 49. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một hoặc hai.
D. Có một.
2
Câu 50. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 3.
D. 2.
Câu 51. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
3
3
3
√
a
15
a
5
a
6
A. a3 6.
B.
.
C.
.
D.
.
3
3
3
Câu 52. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a 3
4a3 3
5a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 53. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Trang 4/10 Mã đề 1
Câu 54. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.
d = 60◦ . Đường chéo
Câu 55. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
a3 6
4a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 56. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Khơng tồn tại.
B. 0.
C. 13.
D. 9.
Câu 57. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m > 0.
D. m ≥ 0.
Câu 58. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 59. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
C. 2.
D. 144.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 60. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 61. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Z 2
ln(x + 1)
Câu 62. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 3.
C. 0.
D. −3.
Câu 63. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 2 13.
B.
.
C. 2.
D. 26.
13
Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
4
6
12
12
x−2
Câu 65. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. 1.
D. −3.
3
Câu 66. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. −3.
D. 3.
Câu 67. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.
D. m > 0.
2
Câu 68. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Trang 5/10 Mã đề 1
ln x p 2
1
Câu 69. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
9
9
3
3
[ = 60◦ , S O
Câu 70. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
[ = 60◦ , S O
Câu 71. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S√BC) bằng
√ với mặt đáy và S O = a.
√
a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
17
19
Câu 72. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
b a2 + c2
a b2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 73. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 74. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
1
C. lim un = .
2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 75. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 76. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 77. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.
C. Chỉ có (II) đúng.
D. Cả hai đều đúng.
Câu 78. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + 1.
D. T = e + .
e
e
Câu 79. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 5.
D. 0, 4.
Câu 80. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. − .
2
D.
1
.
2
Trang 6/10 Mã đề 1
2n + 1
Câu 81. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 3.
D. 1.
Câu 82. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.
C. 20.
D. 30.
√
Câu 83. √
Thể tích của khối lập phương có cạnh bằng a 2
√
√
2a3 2
.
B. 2a3 2.
A.
C. V = 2a3 .
D. V = a3 2.
3
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 40a3 .
B. 20a3 .
C.
.
D. 10a3 .
3
Câu 85. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
A. .
B.
.
C. .
D.
.
5
10
5
10
Câu 86. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n2 lần.
D. n3 lần.
Câu 87. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. − < m < 0.
C. m ≤ 0.
D. m > − .
4
4
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
√
√
a3 3
a3 3
2a3 3
3
C.
.
B. a 3.
.
D.
.
A.
3
3
6
Câu 89. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 3.
D. 27.
Câu 90.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.
A.
Z
C.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
Z x
D.
dx = x + C, C là hằng số.
B.
√
Câu 91. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
a 38
3a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
n−1
Câu 92. Tính lim 2
n +2
A. 1.
B. 3.
C. 2.
D. 0.
Câu 93. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
!
x+1
Câu 94. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A.
.
B.
.
C.
.
D. 2017.
2018
2017
2018
Trang 7/10 Mã đề 1
Câu 95. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
!vn
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 96. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
Câu 97. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln x.
A. y0 =
ln 2
x2 − 5x + 6
Câu 98. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.
C. y0 = 2 x . ln 2.
D. y0 =
C. 5.
D. 1.
1
2 x . ln
x
.
Câu 99. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
Câu 100. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(−4; 8).
D. A(4; −8).
Z 3
a
x
a
Câu 101. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = −2.
D. P = 4.
Câu 102. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
Câu 103. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 104. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
8
24
48
24
7n2 − 2n3 + 1
Câu 105. Tính lim 3
3n + 2n2 + 1
7
2
A. 1.
B. - .
C. 0.
D. .
3
3
0
Câu 106. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 12.
B. 4.
C. 10.
D. 11.
!
3n + 2
2
Câu 107. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
Trang 8/10 Mã đề 1
Câu 108. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+2
c+3
c+2
c+1
Câu 109. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 4.
D. ln 14.
Câu 110. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10
Câu 111. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
Câu 112. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Bốn cạnh.
D. f 0 (0) = ln 10.
D. 2.
D. Năm cạnh.
Câu 113. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
Câu 114.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3
√
a 3
a 3
a 2
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
2n2 − 1
Câu 116. Tính lim 6
3n + n4
2
A. 0.
B. .
C. 1.
D. 2.
3
Câu 117. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
C. S = 135.
D. S = 32.
π
Câu 118. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 4.
C. T = 2.
D. T = 3 3 + 1.
Câu 119. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
!
1
1
1
Câu 120. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 2.
C. .
D. 0.
2
√
Câu 121. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. (1; 2).
C. [3; 4).
D. 2; .
2
2
Trang 9/10 Mã đề 1
x−3
Câu 122. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.
C. +∞.
D. 0.
Câu 123. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 0.
√
√
4n2 + 1 − n + 2
Câu 124. Tính lim
bằng
2n − 3
A. 2.
B. 1.
C. 3.
D. 1.
3
.
2
Câu 125. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
C. +∞.
D.
Câu 126. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 127. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 128. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 3.
D. 6.
Câu 129. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (II) và (III).
C. (I) và (III).
Câu 130. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).
D. (I) và (II).
D. (1; −3).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
1.
2.
C
3.
B
C
4.
5.
D
6.
B
7.
D
8.
B
B
9.
C
10.
11.
C
12.
D
14.
D
16.
D
13.
D
15. A
17.
B
18. A
19.
B
20.
21.
23.
C
22.
B
D
26.
27.
C
28.
29.
C
30.
B
33. A
C
38.
D
39.
43.
D
B
C
49.
D
53.
D
B
55. A
C
57.
B
58.
D
B
59.
D
61.
B
62.
D
63.
64.
D
65.
66.
C
51.
B
54.
C
47. A
52.
60.
D
45.
48.
56.
B
41. A
C
44. A
50.
B
34.
36. A
46.
D
C
D
42.
C
32.
35.
40.
B
24. A
25.
31.
D
C
68. A
1
C
B
C
67.
B
69.
B
70. A
71. A
D
72.
C
73.
74.
C
75.
C
76.
C
77.
C
78. A
79.
80. A
81. A
C
82.
84.
83.
B
86.
D
D
87.
D
C
89.
90.
C
91.
D
95.
C
B
102. A
104.
B
106. A
C
99.
D
101.
D
103.
B
105.
B
109.
C
110.
D
D
111.
C
C
112.
B
113.
114.
B
115. A
117.
116. A
B
119.
120. A
D
C
121. A
122.
124.
B
107. A
108.
118.
D
97.
98. A
100.
C
93. A
94. A
96.
B
85.
88.
92.
B
D
123. A
B
125.
126. A
C
127. A
128.
C
130.
C
129.
2
D