Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (47)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.68 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
2n + 1
Câu 2. Tìm giới hạn lim
n+1
A. 0.
B. 2.

C. 1.

D. 3.

Câu 3. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

B. 7 3.


C. 16.
D. 8 3.
A. 8 2.




Câu 4. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
4
4
log2 240 log2 15
Câu 5. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. 3.
D. −8.
2

Câu 6. √

Biểu thức nào sau đây khơng
có nghĩa

−3
0
A. (− 2) .
B.
−1.
Câu 7. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2

2

C. (−1)−1 .
C. un =

1 − 2n
.
5n + n2


Câu 8. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 2.

D. 0−1 .
D. un =
1
3|x−1|

C. 1.

n2 − 3n
.
n2

= 3m − 2 có nghiệm duy

D. 3.

Câu 9. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m ≥ 0.
C. m > − .
D. − < m < 0.
4

4
Câu 10. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 11. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 12. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối lập phương.
8
Câu 13. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 96.
D. 64.
Trang 1/11 Mã đề 1


ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

x2
1
A. 3.
B. 1.
C. −3.
D. 0.
1
Câu 15. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Z

2

Câu 14. Cho

Câu 16. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. (−∞; +∞).

D. [−1; 2).


Câu 17. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (II).

D. (I) và (III).

Câu 18. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 6510 m.
D. 1202 m.
Câu 19. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.
C. 3.

D. 1.

Câu 20. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 13 năm.
D. 10 năm.
Câu 21. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2

1
D. V = S h.
3

Câu 22. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
5
7
A.
; 0; 0 .
B.
; 0; 0 .
C.

; 0; 0 .
D. (2; 0; 0).
3
3
3
Câu 23. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. 6.

D. 8.
q
2
Câu 24. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [0; 4].

Câu 25. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 26. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.

B. 72.
C. −7, 2.

D. 0, 8.
Trang 2/11 Mã đề 1


Câu 27. Các khẳng định nào sau đây là sai?
!0
Z
Z
Z
f (x)dx = f (x).
A.
k f (x)dx = k
f (x)dx, k là hằng số.
B.
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
a
1
+
, với a, b ∈ Z. Giá trị của a + b là

4 b ln 3
C. 7.
D. 2.

Câu 28. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 4.

B. 1.

Câu 29. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
.
B. P =
.
C. P = 2.
D. P = 2i.
A. P =
2
2
Câu 30. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.

C. D = R \ {0}.

D. D = R \ {1}.

Câu 31. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.


Câu 33.

Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6 −√x


A. 2 3.
B. 3.
C. 2 + 3.
D. 3 2.
1
Câu 34. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. 3.

D. −3.
3
3
1 − 2n
Câu 35. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. 1.
C. − .
D. .
3
3
3
Câu 32. [3-12217d] Cho hàm số y = ln

d = 300 .
Câu 36. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.


3

a3 3
3a
3

A. V =
.
B. V = 3a3 3.
C. V = 6a3 .
D. V =
.
2
2
Câu 37. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3 5
a3
A.
.
B.
.
C.
.
D.
.
25
5
25
3
Câu 38. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.

B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.
Trang 3/11 Mã đề 1


Câu 39. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
4a3 3
2a3 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
log(mx)
Câu 40. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất

log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 41. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B.
.
C. a 3.
.
D.
3
2
2
Câu 42. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .

D. .
2
8
4
[ = 60◦ , S O
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S BC) bằng
√ với mặt đáy và S O = a.


a 57
2a 57
a 57
.
B.
.
C. a 57.
.
A.
D.
19
19
17
Câu 44. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −15.
D. −5.

Câu 45. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.

D. 1 − sin 2x.

Câu 46. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. 0.

D. Không tồn tại.

Câu 47. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
Câu 48. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.
Câu 49. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
−2

C. M = e − 2; m = 1.
D. M = e−2 + 2; m = 1.
Câu 50.√Thể tích của tứ diện đều √
cạnh bằng a

a3 2
a3 2
a3 2
.
B.
.
C.
.
A.
2
12
4
Câu 51. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Năm cạnh.
!x
1
1−x
Câu 52. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. log2 3.
C. 1 − log2 3.



a3 2
D.
.
6
D. Bốn cạnh.

D. − log3 2.

Câu 53. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Trang 4/11 Mã đề 1





4n2 + 1 − n + 2

bằng
2n − 3
B. +∞.

Câu 54. Tính lim
3
C. 2.
D. 1.
A. .
2
Câu 55. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 34.
C.
.
D. 5.
17
3
x −1
Câu 56. Tính lim
x→1 x − 1
A. 3.
B. 0.
C. −∞.

D. +∞.
Câu 57. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 4 mặt.

D. 3 mặt.

Câu 58. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Câu 59. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
2
1
1
B.
.
C. .
D.
.
A. .
5
10

5
10
Câu 60. Bát diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 61. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 8 m.
D. 24 m.
Câu 62. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. 2
.
D.
.
A. √
.
C.


a + b2

2 a2 + b2
a2 + b2
a2 + b2
Câu 63. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 64. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 65. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 66. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.

C. 8.

Câu 67. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).


D. 4.
D. (2; 2).
Trang 5/11 Mã đề 1


Câu 68.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
A.
.
B.
.
e
3

!n
5
C. − .
3

!n
1
D.
.
3

1 − n2

Câu 69. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. − .
C. 0.
D. .
A. .
2
2
3
Câu 70. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) − g(x)] = a − b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
1
Câu 71. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 72. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1728
1079
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 73. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 7 năm.
D. 10 năm.
cos n + sin n

Câu 74. Tính lim
n2 + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 75. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3

!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 76. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 77. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì


f (x)dx = F(x) + C.

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
n−1
Câu 78. Tính lim 2
n +2
A. 2.
B. 0.

C. 3.

D. 1.
1

Câu 79. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Trang 6/11 Mã đề 1


Câu 80. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 9 lần.
Câu 81. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 82. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 3.

D. 2.

Câu 83. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.
D. 25 m.
Câu 84. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.

Câu 85. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim √ = 0.
n

B. lim un = c (Với un = c là hằng số).
1
D. lim k = 0 với k > 1.
n

!
x+1
Câu 86. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A.
.
B. 2017.
C.
.
D.
.
2018
2017
2018
Câu 87. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc

với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
A.
.
B.
.
C.
.
D.
.
4
12
12
6
Câu 88. Dãy số
!n nào có giới hạn bằng3 0?
−2
n − 3n
A. un =
.
B. un =
.

3
n+1
Câu 89. Tính lim
A. 1.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
B. .
3

C. un = n − 4n.

!n
6
D. un =
.
5

C. 0.

2
D. - .
3

2

Câu 90. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên

√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
6
24
12
Câu 91. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab

ab
A. √
.
B. √
.
C. 2
.
D.
.

a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 7/11 Mã đề 1


Câu 92. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 64cm3 .
D. 72cm3 .
x+1
bằng
Câu 93. Tính lim
x→+∞ 4x + 3
1
1
A. 3.

B. .
C. .
D. 1.
4
3
Câu 94. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 95.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
.
B.
.
C. .
A.
2
12
4
2
0
Câu 96. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng
2
A. 3.
B. 2e.
C. .

e
Câu 97. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.
C. 30.


3
D.
.
4
D. 2e + 1.
D. 8.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 98. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
2
A.
.
B. 2a 2.
C.
.

D.
.
24
24
12
Câu 99.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
1
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
A.
α+1
Z x
Z
C.

0dx = C, C là hằng số.

Câu 100. Tính lim
A. +∞.

x→3

x2 − 9
x−3

D.


B. 3.

dx = x + C, C là hằng số.

C. −3.

Câu 101. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 5}.
Câu 102. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. .
C. 1.
2
2−n
Câu 103. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. −1.
C. 2.

D. 6.
D. {3; 4}.

D.


ln 2
.
2

D. 0.

Câu 104. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 0.

C. 7.

D. 5.

!

5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.


Câu 106. Phần thực
√ và phần ảo của số phức

√ z = 2 − 1 − 3i lần lượt√l

A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 105. [2] Phương trình log x 4 log2

Trang 8/11 Mã đề 1


Câu 107. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 7%.
D. 0, 5%.
Câu 108. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.

D. Hai mặt.

0 0 0 0
Câu 109.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương

√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
12 + 22 + · · · + n2
Câu 110. [3-1133d] Tính lim
n3
1
2
A. .
B. 0.
C. +∞.
D. .
3
3
Câu 111. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
A. a 3.
B. 2a 6.
C.
.
D. a 6.
2

Câu 112. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 7 mặt.

D. 9 mặt.

Câu 113. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {5; 2}.
C. {2}.
D. {3}.
log 2x
Câu 114. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1

1 − 2 ln 2x
.
B. y0 =
.
C. y0 = 3
.
A. y0 = 3
3
x ln 10
2x ln 10
2x ln 10
Câu 115. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình tam giác.

2
Câu 116.
√ Xác định phần ảo của số√phức z = ( 2 + 3i)
B. −6 2.
C. −7.
A. 6 2.

D. y0 =

1 − 2 log 2x
.
x3

D. Hình lăng trụ.


D. 7.
x+2
Câu 117. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vô số.

x2 + 3x + 5
Câu 118. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
D. 0.
4
4

Câu 119. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vơ số.

D. 64.
2n − 3
Câu 120. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. +∞.
D. 0.
Câu 121. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 10.
B. 4.
C. 12.
D. 11.
Trang 9/11 Mã đề 1


Câu 122. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 123. Khối đa diện đều loại {3; 4} có số mặt
A. 10.

B. 6.
x2 − 5x + 6
Câu 124. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.

C. 12.

D. 8.

C. 1.

D. 5.

Câu 125. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.

Câu 126. Thể tích của khối lập phương có cạnh bằng a 2 √

2a3 2
3
3
A. V = 2a .
B. V = a 2.
C.
.

3
Câu 127. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.

D. Không tồn tại.

D. 2a3 2.
D. Khối tứ diện đều.

Câu 128. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 6, 12, 24.
D. 8, 16, 32.
A. 2, 4, 8.
B. 2 3, 4 3, 38.
Câu 129. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 130. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 0.

C. 2.

D. 1.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.

2.

C

3.

C

4.
D

5.

B
D

6.


7.

C

8.

C

9.

C

10.

C

11.

C

12.

13. A

D

14.

C


15.

C

16.

C

17.

C

18.

C

19. A

20. A

21.

D

23.

22. A

C


24. A

25.

D

26.

C

27.

D

28.

C

C

29.

30.

31.

D

32.


33.

D

34. A

35.
37. A

38.
D

41. A
43.

D

36.

C

39.

B

B

B


40.

D

42.

D

44.

45. A

D

B

46.

47.

D

49.

C

48.
50.

C


51.

B

52. A

53.

B

54.

55.

C

56. A

57.

C

58.

D
B
D
B


59.

B

60.

61.

B

62.

D

64.

D

63. A
65.

C

66. A

C

68.

67. A

1

D


69.

70.

B

71. A

D

72.

73.

B

74.

75.

B

76. A

77.


C
B

78.

B

79. A

80.

B

81. A

82.

D

84.

D

C

83.

C


85. A

86. A
C

87.

88. A

89.

D

90.

91.

D

92.

93.

D

95.
99.
103.

96. A


C

98. A

C

102. A

B

104. A
D

105.

106. A

107.

C

108.

109.

C

110. A


111.

D

C

112.

113. A

D

114. A
C

115.

116. A

117. A
119.

D

100.

B

101.


B

94. A

B

97.

D

118. A
120.

B

121.

C

D

122.

123.

D

124. A

125.


D

126.

127.

B

128.

129.

B

130.

2

C
D
C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×