TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
D. lim un = 1.
C. lim un = .
2
Câu 1. [3-1132d] Cho dãy số (un ) với un =
Câu 2. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
v
n
!
un
= 0.
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
Câu 3.√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
1
3
3
A.
.
B. .
C. .
D. 1.
2
2
2
Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Ba mặt.
D. Hai mặt.
Câu 5. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 6. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
C. 30.
D. 8.
C. −1.
D. 0.
Câu 7. Tính giới hạn lim
x→2
A. 5.
x2 − 5x + 6
x−2
B. 1.
Câu 8. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 9. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
C. y0 = 1 − ln x.
D. y0 = x + ln x.
C. 2.
D. 1.
Câu 10. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 3.
Câu 11. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 210 triệu.
C. 212 triệu.
D. 216 triệu.
Trang 1/10 Mã đề 1
Câu 12. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 7%.
D. 0, 5%.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 13. Cho
x2
1
A. 3.
B. 0.
C. 1.
D. −3.
Câu 14. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 15. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
4
12
Câu 17. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.
D. 2.
3
2
Câu 18. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. 3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.
√
D. −3 − 4 2.
Câu 19. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 15
a3 5
a3
A.
.
B.
.
C.
.
D.
.
25
5
25
3
Câu 20. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. 1.
C. .
D. .
2
2
x−3
Câu 21. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. 0.
D. −∞.
Câu 22. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 4.
C. 6.
D. 8.
Câu 23. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
√
Câu 24. [12215d] Tìm m để phương trình 4 x+
3
A. 0 < m ≤ .
B. m ≥ 0.
4
1−x2
√
− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
− 4.2 x+
1−x2
Trang 2/10 Mã đề 1
!
3n + 2
2
Câu 25. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
x=t
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
C. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
D. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
0
Câu 27. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 4.
C. 12.
D. 10.
[ = 60◦ , S O
Câu 28. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng
√
√ Khoảng cách từ O đến (S
√
a 57
2a 57
a 57
.
C.
.
D.
.
B.
A. a 57.
17
19
19
Câu 29. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 20a3 .
C. 40a3 .
D. 10a3 .
3
Câu 30. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
6
2
Câu 31. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.
C. 10 năm.
D. 8 năm.
Câu 32.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
.
B.
.
C.
.
A.
2
4
12
Câu 33. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
C. y = log 41 x.
D. y = log √2 x.
D.
3
.
4
mx − 4
Câu 34. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 26.
D. 45.
Câu 35. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + .
C. T = 4 + .
D. T = e + 3.
e
e
Câu 36. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .
D. −2e2 .
Trang 3/10 Mã đề 1
Câu 37. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; − .
C. − ; +∞ .
2
2
2
!
1
D. −∞; .
2
Câu 38. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
3
x −1
Câu 39. Tính lim
x→1 x − 1
A. −∞.
B. 3.
C. 0.
D. +∞.
Câu 40. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
√
√
4n2 + 1 − n + 2
Câu 41. Tính lim
bằng
2n − 3
A. 2.
B. 1.
Câu 42. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. {3; 4}.
C.
3
.
2
C. 9 cạnh.
D. {3; 3}.
D. +∞.
D. 10 cạnh.
Câu 43. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
1
9
A. .
B. .
C.
.
D.
.
5
5
10
10
Câu 44. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối bát diện đều.
!
x+1
Câu 45. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
Câu 46. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =
√
3
3
4a 3
4a
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 47. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 48. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. a.
B. .
C. .
D.
.
2
3
2
2n + 1
Câu 49. Tìm giới hạn lim
n+1
A. 1.
B. 0.
C. 3.
D. 2.
Trang 4/10 Mã đề 1
d = 30◦ , biết S BC là tam giác đều
Câu 50. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
16
9
26
Câu 51. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
C. 144.
D. 2.
Câu 52. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. (1; 2).
D. [3; 4).
2
2
√
ab.
Câu 53. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
a3 3
2a3 3
4a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 54. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
C. 68.
B.
D. 5.
A. 34.
17
4x + 1
bằng?
Câu 55. [1] Tính lim
x→−∞ x + 1
A. 4.
B. 2.
C. −1.
D. −4.
Câu 56. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. .
B.
.
n
n
C.
n+1
.
n
1
D. √ .
n
Câu 57. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
Câu 58. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
a2 5
11a2
a2 2
a2 7
.
B.
.
C.
.
D.
.
A.
8
16
32
4
x−3 x−2 x−1
x
Câu 59. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. (−∞; 2].
D. [2; +∞).
Câu 60. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).
C. (0; 2).
D. (−∞; 0) và (2; +∞).
Câu 61. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
.
B.
.
C.
.
D. a3 .
A.
3
6
2
Câu 62. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
Trang 5/10 Mã đề 1
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 63. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
Câu 64.
√ Tìm giá trị lớn nhất của hàm
√ số y =
A. 3 2.
B. 2 + 3.
√
C. {3; 4}.
√
x+3+ 6−x
C. 3.
D. {4; 3}.
√
D. 2 3.
2
Câu 65. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
Câu 66. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 6
a 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
q
2
Câu 67. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 68. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m ≤ 0.
D. m > − .
A. m ≥ 0.
B. − < m < 0.
4
4
x−1 y z+1
Câu 69. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 70. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 14 năm.
D. 12 năm.
Câu 71. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 72. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B.
.
C. a 3.
D. a 6.
2
1
Câu 73. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 74. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (4; +∞).
Câu 75. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (−1; −7).
D. (2; 2).
Trang 6/10 Mã đề 1
Câu 76. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 77. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 0.
C. 2.
D. 1.
x+3
nghịch biến trên khoảng
Câu 78. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 79. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x2 +2x
Câu 80. [2] Tổng các nghiệm của phương trình 2
= 82−x là
A. 5.
B. −6.
C. 6.
D. −5.
!
5 − 12x
Câu 81. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 1.
C. 3.
D. 2.
Câu 82. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
8
4
Câu 83. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −3.
D. −5.
Câu 84. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 6 mặt.
x+2
Câu 85. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 1.
D. 4 mặt.
D. 3.
tan x + m
Câu 86. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 87. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
8
1
A. .
B. .
C. .
D. .
9
3
3
9
2
2
Câu 88. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. .
C. .
D. 6.
2
2
Câu 89. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.
D. {3; 4}.
Trang 7/10 Mã đề 1
Câu 90. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 2.
D. x = 3.
Câu 91. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 22016 .
D. 0.
Câu 92. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
2
Câu 93. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. √ .
A. 2 .
C. 3 .
e
2e
2 e
D.
2
.
e3
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 6
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
24
48
48
16
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
2a3 3
a3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 96. Cho
√
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 97. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 ,
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D.
2n − 3
bằng
Câu 98. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.
C. −∞.
D.
log 2x
Câu 99. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D.
2x ln 10
x ln 10
2x3 ln 10
Câu 100. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
biết tạo độ A(−3; 2; −1),
A0 (−3; −3; 3).
1.
y0 =
1 − 2 log 2x
.
x3
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
C. S = 22.
D. S = 32.
5
Câu 101. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng
√
1
A. 25.
B. .
C. 5.
D. 5.
5
a
1
Câu 102. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 4.
C. 2.
D. 1.
log √a
Câu 103. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
π π
Câu 104. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
Trang 8/10 Mã đề 1
Câu 105. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
Câu 106. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
Câu 107. [1-c] Giá trị của biểu thức
A. −2.
log7 16
log7 15 − log7
B. 2.
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim− f (x) = f (b).
15
30
bằng
C. −4.
D. 4.
[ = 60◦ , S A ⊥ (ABCD).
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√
√chóp S .ABCD là
3
3
√
a 2
a 3
a3 2
3
B.
A. a 3.
.
C.
.
D.
.
12
6
4
Câu 109. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.
C. 30.
D. 20.
Câu 110. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều. D. Bát diện đều.
√
Câu 111. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 64.
D. 63.
Câu 112. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
9
13
.
B. −
.
C. − .
D.
.
A.
100
100
16
25
Câu 113.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 114. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).
D. [1; 2].
√
√
Câu 115. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 1.
B. 2.
C. .
D. −1.
2
2mx + 1
1
Câu 117. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. 1.
D. −2.
Câu 116. [2-c] Cho hàm số f (x) =
Câu 118. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4
4
Trang 9/10 Mã đề 1
Câu 119. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 120. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4
cos n + sin n
Câu 121. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 122. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
√
3
4
Câu 123. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
7
2
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
√
Câu 124. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Câu 125. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 12.
D. ln 4.
Câu 126. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
Câu 127. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 128. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Khơng có.
D. Có hai.
Câu 129. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 130. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 2, 4, 8.
A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
3.
D
5. A
B
4.
B
6.
B
11.
D
C
10.
C
12.
C
C
13.
D
14.
15.
D
16.
17.
C
8.
C
7.
9.
2.
18.
B
D
B
D
20.
19. A
21.
C
22. A
23. A
24.
25. A
26. A
27.
C
C
28.
C
29.
B
30.
B
31.
B
32.
B
B
33.
D
34.
35.
D
36. A
37.
C
38.
B
39.
B
40.
D
41.
B
42.
D
43.
D
44.
B
45.
D
46.
B
47.
B
48. A
D
49.
51.
50. A
C
52. A
53. A
54.
55. A
56.
57.
B
C
58. A
59.
D
60.
61.
C
62. A
63.
C
64. A
65. A
67.
B
D
66. A
68.
C
1
D
69.
70. A
B
71.
D
72.
73.
D
74.
B
76.
B
75.
B
77.
C
78. A
79.
C
80.
81.
D
D
82.
C
83. A
84.
C
85. A
86.
C
87. A
88.
C
89. A
90. A
B
91.
D
92. A
93. A
95.
D
97.
99.
C
94.
96. A
C
98.
B
100.
B
101. A
102. A
103. A
104. A
106. A
107.
108.
D
D
C
109.
110.
B
111. A
112.
B
113.
114.
B
115. A
116. A
D
B
117. A
118.
119.
C
120.
B
121. A
122.
B
123.
124.
D
127.
B
130.
B
D
125. A
126. A
128.
C
129.
2
C
D