Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (563)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.45 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
π
Câu 2. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2.
C. T = 3 3 + 1.
D. T = 4.
A. T = 2 3.
Câu 3. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
2

Câu 4. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là


A. 2 − log2 3.
B. 1 − log2 3.
C. 3 − log2 3.

D. 1 − log3 2.

Câu 5. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 6. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+2
c+3
c+1
c+2
1

. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 7. [3-12217d] Cho hàm số y = ln
xy + 1
0
y
0
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 8. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 3.
12
3
4


Câu 9. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho

√ là


πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
6
2
Câu 10. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 72.

D. 7, 2.

Câu 11. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là

A. −2e2 .
B. 2e4 .
C. 2e2 .
D. −e2 .
Câu 12. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 4.
D. V = 3.
Trang 1/10 Mã đề 1


Câu 13. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
ln x p 2
1
Câu 14. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x

3
1
1
8
8
B. .
C. .
D. .
A. .
3
3
9
9
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6

3
3
Câu 16. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 3.
C. 2e + 1.
D. .
e
Câu 17. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.
D. Cả hai đều sai.
 π
Câu 18. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
A. 1.
B.
e .
C. e .

D.
e .
2
2
2
Câu 19. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 20. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
!
! đề nào dưới đây đúng?
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Câu 21. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. √ .
B.
.

n
n

C.

1
.
n

D.

n+1
.
n

Câu 22. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Câu 23. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

A. 0, 5.
B. 0, 3.
C. 0, 4.
D. 0, 2.
Câu 24. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.

C. 4.

D. 2.
Trang 2/10 Mã đề 1


x2 − 5x + 6
Câu 25. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.

C. 5.
0

0

0

D. −1.


0
Câu 26.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
Câu 27. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 24.
D. 22.

Câu 28. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.

B. Khối tứ diện đều.

0

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 29. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (3; 4; −4).
Câu 30. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là

4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
6
36
24
12
Câu 31. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 32. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 2, 4, 8.

B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
Câu 33. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 1.
C. Vô số.
D. 3.
Câu 34. Dãy số nào có giới hạn bằng 0?!
n
−2
n3 − 3n
.
.
B. un =
A. un =
n+1
3

!n
6
C. un =
.
5

D. un = n2 − 4n.

Câu 35. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17

A. −9.
B. −15.
C. −12.
D. −5.

Câu 36.
phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. −7.
D. 7.
Câu 37. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. 3n3 lần.
D. n lần.
Câu 38. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.

.
D.
.
12
4
8
4
Trang 3/10 Mã đề 1


x+1
Câu 39. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
3
2
6
3
Câu 40. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .

D. 120 cm2 .
Câu 41. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
A.
.
B. 8 3.
.
C. 6 3.
D.
3
3
Câu 42. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 5.
C. 68.
D. 34.
17

Câu 43. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 6 mặt.
D. 8 mặt.

2
Câu 44. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vơ số.
D. 64.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 45. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
2016
4035
A. 2017.
B.
.
C.
.
D.
.
2018
2017

2018
Câu 46. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 8 mặt.
D. 4 mặt.
Câu 47. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Một mặt.
log3 12

Câu 48. [1] Giá trị của biểu thức 9
A. 144.
B. 24.

D. Ba mặt.

bằng
C. 2.

D. 4.

Câu 49. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.

C. 1587 m.
D. 25 m.
Câu 50. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C. 18.
D.
.
2
x2
Câu 51. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = .
e
e
[ = 60◦ , S A ⊥ (ABCD).
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3


a 2
a 3
a3 2
3
A. a 3.
B.
.
C.
.
D.
.
4
6
12
Trang 4/10 Mã đề 1


[ = 60◦ , S O
Câu 53. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
B.
A. a 57.

.
C.
.
D.
.
17
19
19
Câu 54. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 55. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 56. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 5.
C. .
D. 7.
A.
2
2
Câu 57. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1

1 − 2e
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4e + 2
4 − 2e
4 − 2e
 π π
Câu 58. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. 1.
D. −1.
Câu 59. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B.
u

=
.
n
n2
5n + n2
Câu 60. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.

C. un =

n2 − 2
.
5n − 3n2

D. un =

C. 2.

n2 + n + 1
.
(n + 1)2

D. 5.

Câu 61. Cho z là√nghiệm của phương trình x + x + 1 = 0. Tính P =√z + 2z − z
−1 − i 3
−1 + i 3
A. P =
.

B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 62. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
2

4

Câu 63. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. −2.
B. .
C. 2.
2
Câu 64. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.
C. 8.

3

1
D. − .

2
D. 10.

d = 300 .
Câu 65. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2
Câu 66. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

Trang 5/10 Mã đề 1


2

2

Câu 67. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần
√ Giá trị nhỏ nhất √
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
2

Câu 68. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 5.


D. 2.

Câu 69. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
D. V = S h.
A. V = 3S h.
B. V = S h.
C. V = S h.
3
2



x = 1 + 3t




Câu 70. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
3t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 7t

















A. 
B. 
.
y = 1 + 4t .
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y=1+t

















z = 1 − 5t
z = −6 − 5t
z = 6 − 5t
z = 1 + 5t
!
1
1
1
+
+ ··· +
Câu 71. Tính lim
1.2 2.3
n(n + 1)
3
B. 0.
C. 2.
D. 1.
A. .
2
8
Câu 72. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.

C. 96.
D. 82.
2

Câu 73. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 7.
C. 8.

D. 5.

Câu 74. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 75. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A. y0 = .
B.
.
C. y0 =

.
D. y0 =
.
x
10 ln x
x ln 10
x
!
!
!
4x
1
2
2016
Câu 76. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
2017
Câu 77. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ

ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
6
2
12 + 22 + · · · + n2
Câu 78. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. .
D. 0.
3
3
Trang 6/10 Mã đề 1



Câu 79. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim

un
bằng
vn
D. −∞.

C. +∞.

Câu 80. [1228d] Cho phương trình
x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vơ số.
D. 63.

Câu 81. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 4.
D. 36.
A. 1.

B. 0.

(2 log23

Câu 82. [1] Tập

! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. − ; +∞ .
C. −∞; .
2
2
2
Câu 83. Tính lim

!
1
D.
; +∞ .
2

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.

7
2
D. .
C. - .
3
3
1 + 2 + ··· + n

Câu 84. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 1.
2
Câu 85.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A. 1.

A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

B.
Z
D.

( f (x) + g(x))dx =

f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.
D. 1.
!2x−1
!2−x
3
3


Câu 87. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. [3; +∞).
C. (+∞; −∞).
D. (−∞; 1].
2n + 1
Câu 88. Tính giới hạn lim
3n + 2
2

1
3
B. .
C. 0.
D. .
A. .
2
3
2
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là

3
3

a 3
2a 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
6
3

3
Câu 90. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 86. [1-c] Giá trị biểu thức

Câu 91. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Z 1
6
2
3
Câu 92. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.

B. 4.

C. −1.

D. 6.

Trang 7/10 Mã đề 1


Câu 93. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

C. +∞.

B. 1.

D. 3.

Câu 94. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √

3
3
3
4a
2a
2a 3
4a3 3
A.
.
B.
.

C.
.
D.
.
3
3
3
3
Câu 95. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. 6.
2

D. −5.

Câu 96. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 3.

C. 2.

D. 1.

Câu 97. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥

(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a 5
a3 6
a3 15
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
x+3
nghịch biến trên khoảng
Câu 98. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vô số.
x+2

Câu 99. Tính lim
bằng?
x→2
x
A. 3.
B. 2.
C. 0.
D. 1.
x−2 x−1
x
x+1
Câu 100. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. [−3; +∞).
Câu 101. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
2
6
3
Câu 102. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [1; 2].
C. [−1; 2).

D. (1; 2).

Câu 103. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 1.
D. 7.
Câu 104. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 8/10 Mã đề 1



(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 3.

D. 2.

Câu 105. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
A. 2
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2

Câu 106. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
d = 30◦ , biết S BC là tam giác đều
Câu 107. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
26
13
9
Câu 108. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.

B. 11 cạnh.

C. 9 cạnh.

D. 10 cạnh.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.

Câu 109. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 110. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Có hai.
D. Khơng có.
Câu 111. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.

1
Câu 112. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 113. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).

D. R.

3
2
x
Câu 114. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.

Câu 115. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 8.
D. 3.

Câu 116. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. 0.
2x + 1
Câu 117. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
2
Câu 118. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 3 nghiệm.
B. 1 nghiệm.

C. −∞.

D. 3.

C. 1.
D. 2.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. Vơ nghiệm.
D. 2 nghiệm.

Trang 9/10 Mã đề 1


log 2x

Câu 119. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
2x ln 10
x ln 10
2x3 ln 10
3
2
Câu 120. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2

A. 3 + 4 2.
B. 3 − 4 2.
C. −3 + 4 2.


D. −3 − 4 2.


Câu 121. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.

C. y0 = ln x − 1.

D. y0 = 1 + ln x.

Câu 122. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối 12 mặt đều.

D. y0 =

1 − 2 log 2x
.
x3

Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5

A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 124. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
a 3
a3 2
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.

4
6
12
12
Câu 125. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 3.
D. 1.
Câu 126. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
2

Câu 127. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 2 .
B.
.
C.
√ .
e
2e3
2 e


D.

2
.
e3

Câu 128. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.
!
1
1
1
+ ··· +
Câu 129. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. 2.
D. +∞.
2
2
Câu 130. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình

! chiếu của B, C lên các cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
7
5
8
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C

3.


D

D

4. A
6.

5. A
7.

8.

C

9. A

D
B

10. A

11.

D

12.

13.

D


14.

15.

D

16.

C
D
B

17.

B

18.

D

19.

B

20.

D

21.

23.

D

22. A

B

24.

25.

D

26.

27.

D

28. A

C
D

29.

B

30.


31.

B

32.

B

34.

B

33. A
35.
37.

C

36. A

B

38.

39.

D

41.


C

42. A
44.

B

46. A

B

47. A
49.

C

40. A

43. A
45.

D

48. A
B

50.

51. A

53.

D

C

52.

B

54.

B

55. A

56.

C

57. A

58.

C

59.

B


60. A

61.

B

62.
64. A

63. A
65.
67.

C

C

66.
D

68. A
1

B


69.

D


71.
73.

72.

B

C
B
C

74.
76.

C

75.
77.
79.

70.

C

D

D
C

78.


B

80.

B
B

81.

C

82.

83.

C

84.

85.

C

86.

B

88.


B

87. A
89.

D

90.

91.

D

92.

93. A

D
B

94. A
D

95.
97.
99.

C

C

B

101.

96.

B

98.

B
C

100.
102. A

C

104.

103. A
105.

C

106. A

107.

C


108.

109.

B

110.

111.

B

112.

113. A

D
D
C
B

114. A

115.

D

116.


D

117.

D

118.

D

119.

B

121.

D
B

122.

C

126.

127. A
129.

C


124.

123. A
125.

120.

C

2

D
B

128.

D

130.

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×