TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C. 5.
D.
.
2
2
Câu 2. [1] Tập! xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; − .
B. −∞; .
C.
; +∞ .
D. − ; +∞ .
2
2
2
2
Câu 3. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
abc b2 + c2
a b2 + c2
c a2 + b2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 4. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
log(mx)
Câu 5. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
x+1
bằng
Câu 6. Tính lim
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. .
D. 1.
4
3
Câu 7. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.
C. 4.
D. 24.
Câu 8. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 9. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
√
Câu 10. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 36.
D. 4.
Câu 11. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
4a
2a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
1
Câu 12. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. 1.
C. −1.
D. −2.
√
Câu 13. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
4
12
Trang 1/10 Mã đề 1
Câu 14. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Trục ảo.
√
√
4n2 + 1 − n + 2
Câu 15. Tính lim
bằng
2n − 3
3
A. 1.
B. +∞.
C. 2.
D. .
2
Câu 16. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 17. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. .
C. 1.
D. .
2
2
x−3 x−2 x−1
x
Câu 18. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. [2; +∞).
D. (−∞; 2).
Z 1
Câu 19. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2
0
B. 1.
C.
1
.
4
D. 0.
Câu 20. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 2.
D. 7.
Câu 21. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 24.
D. 23.
Câu 22.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
√
3
3
3
3
A.
.
B. .
C.
.
D.
.
2
4
12
4
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
4a 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 24. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 − ln x.
Câu 25. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều.
D. y0 = 1 + ln x.
D. Bát diện đều.
Câu 26. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 27.
C. 12.
D. 18.
2
Trang 2/10 Mã đề 1
Câu 27. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 28. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
Câu 29. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
D. −e.
e
2e
e
2n2 − 1
Câu 30. Tính lim 6
3n + n4
2
A. .
B. 2.
C. 1.
D. 0.
3
Câu 31. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Tăng lên n lần.
2
Câu 32. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
−1
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 33. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.
!
1
1
1
+ ··· +
Câu 34. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. 2.
D. .
2
2
Câu 35. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
◦
Hai mặt bên
√hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
√ (S BC) và (S AD) cùng
3
3
8a 3
8a 3
a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
9
3
9
Câu 36. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
[ = 60◦ , S O
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng
√
√
a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 38.
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
A. 10.
B. 1.
C. 2.
D. 2.
Câu 39. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 3.
D. 1.
√
Câu 40. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6
36
Trang 3/10 Mã đề 1
!2x−1
!2−x
3
3
Câu 41. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (+∞; −∞).
C. (−∞; 1].
D. [3; +∞).
Câu 42. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. −4.
D. 2.
Câu 43. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.
D. m > 1.
Câu 44. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 2.
D. 0.
Câu 45. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 46. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = −21.
D. P = 21.
Câu 47. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 3.
D. 4.
Câu 48. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 49. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).
D. [1; 2].
Câu 50. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. (I) và (II).
C. (I) và (III).
D. Cả ba mệnh đề.
Câu 51. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
24
6
12
Câu 52. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
Câu 53. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n
B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).
Trang 4/10 Mã đề 1
Câu 54. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
2
4
Câu 55. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.
D. {5; 3}.
1
Câu 56. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Câu 57. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
Câu 58. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
A. T = e + .
e
e
1
Câu 59. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; 3).
Câu 60. Tính lim
7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.
2
7
.
D. - .
3
3
Câu 61. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 26.
B.
D. 2.
.
C. 2 13.
13
3
2
Câu 62. Hàm số y = x − 3x + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (0; 2).
A. 1.
Câu 63. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
A. un =
.
B. un =
.
3
5
C.
C. un =
n3 − 3n
.
n+1
D. un = n2 − 4n.
Câu 64. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
x2
Câu 65. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = e, m = .
D. M = , m = 0.
e
e
2−n
Câu 66. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
C. 0.
D. 1.
!
3n + 2
2
Câu 67. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 4.
D. 5.
Câu 68. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
Trang 5/10 Mã đề 1
Câu 69. Dãy số nào sau đây có giới hạn khác 0?
1
1
B. √ .
A. .
n
n
C.
n+1
.
n
D.
sin n
.
n
Câu 70. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m ≥ 0.
C. − < m < 0.
D. m > − .
4
4
Câu 71. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
B. y = loga x trong đó a = 3 − 2.
A. y = log 14 x.
C. y = log √2 x.
D. y = log π4 x.
Câu 72. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 73. Tính lim
A. +∞.
x→1
x3 − 1
x−1
B. 0.
C. −∞.
D. 3.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
4
6
12
12
2
Câu 75. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
√
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
Câu 76. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
a3 3
2a3 3
5a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
!
!
!
4x
1
2
2016
Câu 77. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2017.
D. T = 2016.
2017
2x + 1
Câu 78. Tính giới hạn lim
x→+∞ x + 1
1
D. 2.
A. 1.
B. −1.
C. .
2
Câu 79. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 1202 m.
D. 6510 m.
2
Câu 80. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 7.
C. 5.
D. 6.
! x3 −3mx2 +m
1
Câu 81. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
Trang 6/10 Mã đề 1
Câu 82. Một khối lăng trụ tam giác có
nhau?
A. 8.
B. 3.
!4x
2
≤
Câu 83. Tập các số x thỏa mãn
3 #
#
2
2
A. −∞; .
B. −∞; .
3
5
thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
C. 4.
3
2
D. 6.
!2−x
là
"
!
2
C.
; +∞ .
5
"
!
2
D. − ; +∞ .
3
Câu 84. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
24
12
6
Câu 85.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. (−1)−1 .
C.
√
−1.
−3
D. 0−1 .
Câu 86. Xét hai câu sau
Z
Z
Z
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
(I)
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
Câu 87. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 3.
D. 5.
Câu 88. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 3.
.
C. 2.
D. 1.
B.
3
1
Câu 89. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 90. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 91. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. +∞.
C. 1.
4
Câu 92. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
2
7
A. a 8 .
B. a 3 .
C. a 3 .
√3
D. 3.
a2 bằng
5
D. a 3 .
Trang 7/10 Mã đề 1
Câu 93. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
5
13
A. −
.
B.
.
C. − .
D.
.
100
25
16
100
Câu 94. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 95. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. 1.
n−1
Câu 96. Tính lim 2
n +2
A. 2.
B. 3.
C. 1.
D. −2 + 2 ln 2.
D. 0.
Câu 97. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
A.
.
B.
.
C.
.
D. a 3.
2
3
2
√
2
√
Câu 98. [2] Phương trình log4 (x + 1) + 2 = log 2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 99. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.
C. 6.
D. 10.
Câu 100. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 13 năm.
x−2
Câu 101. Tính lim
x→+∞ x + 3
2
C. −3.
D. 1.
A. 2.
B. − .
3
Câu 102. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
C.
.
D. 2a 2.
4
2
Câu 103. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. log2 2020.
D. 2020.
Câu 104. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 105. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
√
2a3 3
a3 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
3
6
x2 − 5x + 6
Câu 106. Tính giới hạn lim
x→2
x−2
A. 1.
B. −1.
C. 0.
D. 5.
Trang 8/10 Mã đề 1
Câu 107. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 108. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.
C. 4.
D. 8.
Câu 109. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. 6.
C. 9.
D. .
A. .
2
2
Câu 110. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =
A. Nếu
Z
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu
f 0 (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Câu 111. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Một mặt.
Câu 112. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
A. √
.
D. √
2
2
2
2
2
2
a +b
2 a +b
a +b
a + b2
0 0 0 0
Câu 113.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
Câu 114. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 115. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. −1.
C. .
D. 2.
2
Câu 116. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vơ nghiệm.
C. 3.
D. 2.
q
Câu 117. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 118. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
Câu 119. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C. x = 2.
D. {3; 3}.
D. x = 0.
Trang 9/10 Mã đề 1
Câu 120. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 1587 m.
D. 387 m.
x
Câu 121. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
1
3
A. .
B. .
C.
.
D. 1.
2
2
2
Câu 122. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
1
Câu 123. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
√
√
Câu 124.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + √6 − x
√
A. 2 3.
B. 3.
C. 3 2.
D. 2 + 3.
Câu 125. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
Câu 126. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
3
3
10a
.
A. 20a3 .
B. 10a3 .
C. 40a3 .
D.
3
Câu 127.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
12
4
2
Câu 128. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 129. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aα bα = (ab)α .
B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D.
α
aα
= aβ .
β
a
2
Câu 130. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 − i 3
−1 + i 3
.
C. P =
.
D. P = 2.
A. P = 2i.
B. P =
2
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
3.
C
4.
5.
C
6.
D
C
B
7.
B
8.
9.
B
10.
D
11.
B
12.
D
13.
B
14. A
15. A
16.
17.
D
19. A
C
B
18.
C
20.
C
21.
B
22.
D
23.
B
24.
D
26.
D
25. A
27.
29.
D
28.
C
D
30.
B
31.
C
32.
B
34.
C
35.
B
37.
36. A
38.
D
39. A
B
40. A
41. A
42. A
43.
B
44.
D
46.
C
47.
D
48.
C
49.
B
50.
B
51.
D
52.
D
53.
D
54.
D
55. A
56. A
57.
D
59.
61.
58.
B
60.
C
B
62.
63. A
64.
65. A
66.
D
B
C
B
67.
C
68.
D
69.
C
70.
D
1
71.
72. A
C
D
73.
75. A
77.
76.
B
78.
B
79.
D
C
81.
D
74.
D
80.
B
82.
B
83.
D
84.
C
85.
D
86.
C
88.
C
87. A
89.
D
90.
C
91. A
92.
B
93. A
94.
B
95. A
96.
97.
B
98. A
99. A
D
101.
103. A
105.
B
100.
C
102.
C
104.
B
106.
B
B
107.
D
108.
109.
D
110. A
111.
C
112.
113.
C
114.
115. A
117.
B
C
118. A
120.
121.
D
B
122.
123. A
D
124.
125.
129.
B
116. A
119. A
127.
D
C
126. A
C
B
128.
D
130.
2
B
D