Tải bản đầy đủ (.docx) (13 trang)

Đề tổng hợp kiến thức toán 12 có giải thích (245)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.13 MB, 13 trang )

ĐỀ MẪU CĨ ĐÁP ÁN

ƠN TẬP KIẾN THỨC
TỐN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-------------------------

Họ tên thí sinh: .................................................................
Số báo danh: ......................................................................
Mã Đề: 045.
Câu 1. Cho hình chóp

có đáy là hình chữ nhật cạnh

mặt phẳng đáy



A.
.
Đáp án đúng: A

. Thể tích của khối chóp
B.

Câu 2. Trong khơng gian

.

C.


A.

.

Giải thích chi tiết: Trong khơng gian

đường thẳng


.

B.

.

,



đồng thời cắt cả hai đường thẳng

B.

.

D.

.

là đường thẳng song song với




.

,
đồng thời cắt cả hai

đi qua điểm nào sau đây?

. C.

.

D.



.
.

Ta chọn
song song với

D.

, cho ba đường thẳng
. Gọi

. Đường thẳng


Lấy

Suy ra

.

, cho ba đường thẳng

C.
.
Đáp án đúng: C



bằng

. Gọi
là đường thẳng song song với
đi qua điểm nào sau đây?

Đường thẳng

A.
Lời giải

, cạnh bên SA vng góc với

.
nên




.

1


Phương trình đường thẳng

. Chọn

.

Câu 3. Tập nghiệm của phương trình

A.

B.

C.
Đáp án đúng: D

D.

Câu 4. Cho hình thoi

cạnh

A.

Đáp án đúng: B
Câu 5.

B.

Cho hàm số



. Đẳng thức nào sau đây đúng?
C.

D.

có đồ thị như hình vẽ.

Khẳng định nào sau đây đúng ?
A.
C.
Đáp án đúng: A

.

B.

.

.

D.


.

Câu 6. Cho hình chóp S.ABCD có đáy ABCD là hình vng cạnh a. Biết
tích của khối chóp S.ABCD là:
A.

B.

C.



. Thể

D.
2


Đáp án đúng: D
Câu 7. Cho hai đường thẳng phân biệt khơng có điểm chung cùng nằm trong một mặt phẳng thì hai đường
thẳng đó
A. trùng nhau.
B. cắt nhau.
C. song song.
D. chéo nhau.
Đáp án đúng: C
Câu 8. Cho khối lập phương
lập phương đã cho theo
A.

Đáp án đúng: C
Câu 9. Trong khơng gian
là điểm
A.
.
Đáp án đúng: C

có độ dài cạnh bằng

B.

C.

, cho hai điểm
B.

.

Câu 10. Cho nguyên hàm
A.
.
Đáp án đúng: D

đặt
B.

Tính thể tích khối trụ ngoại tiếp khối

.


D.



. Tọa độ trung điểm đoạn thẳng

C.

.

D.

.

ta được kết quả là
C.

.

D.

.

Giải thích chi tiết: . Đặt
. Ta có
Câu 11. Nhằm tạo mơi trường xanh, sạch, đẹp và thân thiện. Đoàn trường THPT A đã phát động phong trào
trồng hoa tồn bộ khn viên đường vào trường. Sau một ngày thực hiện đã trồng được một phần diện tích. Nếu
tiếp tục với tiến độ như vậy thì dự kiến sau đúng 13 ngày nữa sẽ hồn thành. Nhưng thấy cơng việc có ý nghĩa
nên mỗi ngày số lượng đồn viên tham gia đơng hơn vì vậy từ ngày thứ hai mỗi ngày diện tích trồng tăng lên
4 % so với ngày kế trước. Hỏi công việc sẽ hoàn thành vào ngày bao nhiêu? Biết rằng ngày 19/02/2022 là ngày

bắt đầu thực hiện và làm liên tục.
A. 29/02.
B. 1/03.
C. 28/02.
D. 2/03 .
Đáp án đúng: D
Giải thích chi tiết: Ngày thứ nhất trồng được 1 phần diện tích. Tổng cộng ta có 12 ngày thì hồn thành cơng
việc nên sẽ có 12 phần diện tích
Ngày thứ hai các bạn học sinh trồng được 1+1. ( 1+4 % )
1, 04 n − 1
Ngày thứ n các bạn học sinh trồng được 1+1. ( 1+4 % )+...+( 1+ 4 % ) n− 1=
phần diện tích
1,04 −1
n
1, 04 − 1
Theo đề ta có
=13 ⇒ n ≈ 10,67... .
1,04 −1
Vậy ngày hồn thành là 19+11=30ngày.
Năm 2022 khơng phải năm nhuận. Nên Tháng 2 có 28 ngày, do đó ngày hồn thành là 2/03
Câu 12. Cho khối lập phương
thành khối tứ diện nào sau đây?
A.

B.

phép đối xứng qua mặt phẳng
C.

biến khối tứ diện

D.
3


Đáp án đúng: B
Giải thích chi tiết: Phép đối xứng qua mặt phẳng

Nên phép đối xứng qua mặt phẳng

biến các điểm

biến khối tứ diện

Câu 13. Các khoảng đồng biến của hàm số



A.

B.

C.
Đáp án đúng: B
Câu 14. Cho tứ diện đều

D.
có mặt cầu nội tiếp là

ngoại tiếp
và nội tiếp mặt cầu

nào sau đây đúng ?
A.

thành khối tứ diện



C.

Đáp án đúng: C
Giải thích chi tiết:
Lời giải.

Gọi

và mặt cầu ngoại tiếp là

Một hình lập phương

lần lượt là bán kính các mặt cầu

Khẳng định

B.



D.




Tứ diện đều nên suy ra tâm mặt cầu ngoại tiếp, nội tiếp tứ diện trùng nhau và là trọng tâm của tứ diện. Gọi các
điểm như hình vẽ, khi đó:
Ta có
Mặt cầu ngoại tiếp, mặt cầu nội tiếp hình lập phương đều có tâm là

Gọi các điểm như hình vẽ, khi đó:

Ta có
4


Vậy

Câu 15. Hàm số nào dưới đây có 3 điểm cực trị?
A.

.

B.

C.
.
Đáp án đúng: D
Câu 16. Thể tích

.

D.


.

của khối trịn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường

và hai đường thẳng

quanh trục

A.
Đáp án đúng: B

B.


C.

D.

Giải thích chi tiết: Ta có
Câu 17. 22.12.
(T20) Cho hình nón có đường kính đáy bằng . Biết rằng khi cắt hình nón đã cho bởi
một mặt phẳng qua trục, thiết diện thu được là một tam giác đều. Diện tích tồn phần của hình nón đã cho bằng
A.

.

C.
.
Đáp án đúng: C
Câu 18.


Cho hàm số
có đồ thị
Có bao nhiêu phát biểu sau đây đúng?
(1). Hàm số có 3 điểm cực trị.
(2). Tổng

B.

.

D.

.

như hình vẽ bên.

lớn hơn 0.

(3). Tiếp tuyến tại điểm có hồnh độ
cắt
tại 3 điểm phân biệt.
A. 0.
B. 1.
C. 2.
Đáp án đúng: D
Giải thích chi tiết: Dựa vào hình vẽ, ta thấy rằng:
-Hàm số đã cho có 3 điểm cực trị
(1) đúng.
-Vì

Đồ thị

. Hàm số có 3 điểm cực trị
cắt trục

Do đó, tổng
-Đồ thị

D. 3.

tại điểm có tung độ âm
lớn hơn 0

cắt trục

(2) đúng.

tại điểm
5




là điểm cực trị của hàm số

Tiếp tuyến của

tại




Dễ thấy
cắt đồ thị
tại 3 điểm phân biệt
(3) đúng.
Vậy (1), (2) , (3) đều đúng.
Câu 19. Hình trụ có hai đường trịn đáy ngoại tiếp hai mặt của một hình lập phương cạnh
xung quanh bằng

thì có diện tích

A.
.
B.
.
C.
.
D.
.
Đáp án đúng: B
Giải thích chi tiết: Hình trụ có hai đường trịn đáy ngoại tiếp hai mặt của một hình lập phương cạnh
diện tích xung quanh bằng

thì có

A.
.
B.
.
C.

. D.
.
Lời giải
Hình trụ có hai đường trịn đáy ngoại tiếp hai mặt của một hình lập phương có chiều cao là cạnh của hình lập
phương, tức

. Bán kính đường trịn đáy là

.

Diện tích xung quanh hình trụ là

.

Câu 20. Số vị trí biểu diễn các nghiệm của phương trình
A. 3.
B. 1.
Đáp án đúng: B
Câu 21. Kết quả của
A.

C. 4.

trên đường tròn lượng giác là?
D. 2.

B.

.


là:
.

C.
Đáp án đúng: D

.

D.

.

Câu 22. Cho hình trụ có diện tích xung quanh bằng
Tính diện tích tồn phần của hình trụ.

và độ dài đường sinh bằng bán kính đường trịn đáy.

A.
B.
Đáp án đúng: A
Giải thích chi tiết: Phương pháp:

C.

Sử dụng các cơng thức
R: Bán kính đáy hình trụ
h: Chiều cao của hình trụ.
Cách giải:

D.


, trong đó:

Diện tích xung quanh của hình trụ bằng

Do đó diện tích tồn phần của hình trụ là
6


3 x +1
. Khẳng định nào sau đây là đúng?
1 −2 x
A. Đồ thị hàm số có tiệm cận đứng là đường thẳng x=1.
−3
B. Đồ thị hàm số có tiệm cận ngang là đường thẳng y=
.
2
C. Đồ thị hàm số khơng có tiệm cận.
D. Đồ thị hàm số có tiệm cận ngang là đường thẳng y=3 .
Đáp án đúng: B
Câu 24. Cho hàm số

Câu 23. : Cho hàm số y=

Gọi

là giá trị lớn nhất của hàm số

A.


trên đoạn

.

B.

C.
.
Đáp án đúng: C
Giải thích chi tiết: Cho hàm số

Gọi

.

D.

là giá trị lớn nhất của hàm số

A.
. B.
.
C.
Lời giải
Người làm: Lưu Liên ; Fb: Lưu Liên

. Khẳng định nào đúng?

.


trên đoạn
.

. Khẳng định nào đúng?

D.

.

.
Cho
Bảng biến thiên

7


Dựa vào BBT suy ra
Câu 25. Cho
. Đẳng thức nào sau đây đúng?
A.

.

.

B.

C.
.
Đáp án đúng: A


D.

Câu 26. Cho hàm số

có đạo hàm tại



tại

có tích hệ số góc bằng
A.

.
.

. Gọi

lần lượt là tiếp tuyến của đồ thị hàm số

. Mệnh đề nào sau đây là điều kiện cần và đủ để hai đường thẳng

?

.

B.

.


C.
.
D.
.
Đáp án đúng: B
Câu 27. Thể tích của khối hộp chữ nhật có kích thước lần lượt là 3, 4, 5 là
A. 60
B. 15
C. 12
Đáp án đúng: C
Câu 28. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 2 mặt phẳng.
B. 1 mặt phẳng.
C. 4 mặt phẳng.
D. 3 mặt phẳng.
Đáp án đúng: C
Câu 29. Trong khơng gian với hệ trục tọa độ
vectơ

và có độ dài gấp

A.

.

C.
Đáp án đúng: D

lần độ dài vectơ


, cho hai vectơ
. Khi đó tọa độ của vectơ
B.

.

A.



. Vectơ

ngược hướng với


.

D.

Giải thích chi tiết: Từ giả thiết suy ra
Câu 30. Cho hai số phức

D. 30

.
.

Tìm mơ đun của số phức
B.


8


C.
Đáp án đúng: C

D.

Giải thích chi tiết: Cho hai số phức
A.
Lời giải



B.

Tìm mơ đun của số phức

C.

D.

Vậy
Câu 31. Cho mệnh đề chứa biến P ( x ): {x} ^ {2} +2x−3> 0( x ∈ ℝ ) . Mệnh đề nào dưới đây đúng?
A. P ( −1 ) .
B. P ( 0 ) .
C. P ( 3 ).
D. P ( −2 ) .
Đáp án đúng: C

Câu 32. Cho hình chóp

có đáy

là tam giác đều cạnh 1. Mặt bên

nằm trong mặt phẳng vuông góc với đáy,
mặt cầu ngoại tiếp hình chóp
.
A.
.
Đáp án đúng: D

B.

. Gọi

.

là tam giác cân tại

là điểm đối xứng với

C.

.

qua

D.


và

. Tính bán kính

.

Giải thích chi tiết:
Gọi H là trung điểm của AC, do

là tam giác cân tại

và

và nằm trong mặt phẳng vuông góc với đáy nên
.

Tam giác ABD có AC là đường trung tuyến và
đường tròn ngoại tiếp tam giác ABD.

nên ABD là tam giác vuông tại A, suy ra C là tâm

Dựng trục (d) của đường tròn ngoại tiếp tam giác ABD. Gọi I là tâm của mặt cầu ngoại tiếp khối chóp
và
.
Kẻ
Giả sử
Mặt khác:

.

9


Ta có phương trình:
Suy ra:
.
Vậy phương án C đúng.
Câu 33. Cho khối nón có bán kính đáy r = 3cm, độ dài đường sinh l = 5cm . Khi đó thể tích của khối nón là:
A.
C.
Đáp án đúng: D

.

B.

.

D.

.

Câu 34. Tìm tập nghiệm của bất phương trình sau:
A.

.

.
B.


C.
.
Đáp án đúng: D

.

D.

.

Giải thích chi tiết: Ta có

.

Vậy tập nghiệm cần tìm là:

.

Câu 35. Cho hình lăng trụ đứng


. Gọi

A. .
Đáp án đúng: B

có mặt đáy

là tam giác vng tại


là trung điểm của đoạn

. Tính khoảng cách từ

B.

C.

.

.

đến



,

.
D.

.

Giải thích chi tiết:
Chọn hệ trục toa độ như hình vẽ.
Ta có:

.
.
10



Khi đó ta có:

,

,

Ta có:

,

,

.

.
.

Khi đó phương trình của mặt phẳng

Suy ra



.

Câu 36. Giả sử một hàm chỉ mức sản xuất của một hãng DVD trong một ngày là:
trong đó m là
số lượng nhân viên và n là số lao động chính. Mỗi ngày hãng phải sản xuất 40 sản phẩm để đáp ứng nhu cầu

khách hàng; biết rằng lương của nhân viên là 16$ và lương của lao động chính là 27$. Hãy tìm giá trị nhỏ nhất
chi phí một ngày của hãng sản xuất này.
A. 1440
B. 1540
C. 1340
D. 1240
Đáp án đúng: A
Giải thích chi tiết: Theo giả thiết, chi phí mỗi ngày là:
Do hàm sản xuất mỗi ngày phải đạt chỉ tiêu 40 sản phẩm nên cần có:

Mối quan hệ giữa số lượng nhân viên và chi phí kinh doanh là:
Theo bất đẳng thức AM-GM thì:

Do đó, chi phí thấp nhất cần tìm là:

(USD) khi

60 và lao động chính sấp xỉ 18 người (do
Câu 37.
Cho hình trụ có thiết diện qua trục là hình vng
trịn đáy tâm

. Gọi

khối tứ diện
A.

là điểm thuộc cung

, tức là số nhân viên bằng

)

cạnh

với

của đường trịn đáy sao cho

là đường kính của đường
. Thể tích của


.

B.

.

C.
.
Đáp án đúng: C

D.

.

11


Giải thích chi tiết: Cho hình trụ có thiết diện qua trục là hình vng


cạnh

đường kính của đường trịn đáy tâm

của đường trịn đáy sao cho

. Gọi

. Thể tích của khối tứ diện
A.
Lời giải

. B.

là điểm thuộc cung





. C.

. D.

Ta có:

với

.


.

Kẻ

.
vng tại M có

.
.

.
Câu 38. Cho hình chóp có diện tích đáy B = 3, chiều cao h = 4. Thể tích khối chóp đã cho là:
A. 6
B. 4
C. 12
D. 3
Đáp án đúng: D
Câu 39.
Cho đồ thị của hàm số

A.
C.
Đáp án đúng: A
Câu 40. Cho hàm số

như hình vẽ bên. Khẳng định nào sau đây là đúng?

.


B.

.

.

D.

.

. Gọi

ngang của đồ thị hàm số trên. Khi đó, điều kiện cần và đủ để

là giao điểm của đường tiện cận đứng và tiệm cận
trái dấu là
12


A.
.
Đáp án đúng: A
Giải thích chi tiết: Để

B.

.

C.


.

D.

.

trái dấu thì
----HẾT---

13



×