Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (144)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.11 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C.
.
D. 5.
2
2
√3
4
Câu 2. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
5
B. a 8 .
C. a 3 .
D. a 3 .
A. a 3 .
Câu 3. Khối đa diện đều loại {5; 3} có số mặt


A. 20.
B. 30.

C. 8.

D. 12.

Câu 4. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.

C. 12.

D. 10.

Câu 5. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là
A. 2.
B. 3.
C. 1.
D. 5.

Câu 6. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.
x

Câu 7. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương

ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
15
18
9
Câu 8. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 5 mặt.
Câu 9. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 10. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.
2
x − 3x + 3

Câu 11. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 3.
C. x = 2.

D. m , 0.
D. x = 0.

Câu 12. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

C. lim f (x) = f (a).

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

x→a

Câu 13. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.

C. 3.
Câu 14. [2] Tổng các nghiệm của phương trình 2
A. 6.
B. −5.

D. 2.

x2 +2x

= 82−x là
C. −6.

D. 5.

Câu 15. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. β = a β .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
3

Câu 16. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e2 .

D. e3 .

Trang 1/10 Mã đề 1


1
1
1
Câu 17. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)

!

3
.
D. 0.
2
Câu 18. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
D.
A.
.
B.

.
C. a 3.
.
2
2
3
Câu 19. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. 3n3 lần.
D. n2 lần.
A. 2.

B. 1.

C.

Câu 20. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.

.
B.
.
C.
.
D.
.
6
4
12
12
Câu 22. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
D.
; +∞ .
2
2
2
2
3a
, hình chiếu vng
2

góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
4
3
3
Câu 24. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1

120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Câu 23. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 25. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 6.

C. 5.

D. 4.

Câu 26. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
A.
.
B. −
.
C.

.
D. − .
25
100
100
16
Câu 27. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 2/10 Mã đề 1


Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
x+1
bằng
x→−∞ 6x − 2
1
B. .
2

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 28. Tính lim
A. 1.

C.


1
.
6

D.

1
.
3

[ = 60◦ , S O
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17

19

Câu 30. Thể tích của khối lập phương có cạnh bằng a 2



2a3 2
3
3
3
A. V = 2a .
B. 2a 2.
C. V = a 2.
D.
.
3

Câu 31. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. (1; 2).
D. [3; 4).
2
2
Câu 32. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
1
Câu 33. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. − .
C. .
D. −3.
3
3
!
5 − 12x
Câu 34. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. Vơ nghiệm.
C. 2.
D. 1.
Câu 35. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].

A. 1.

B. 3.

Câu 36. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
A. un =
.
B. un =
.
3
5

C. 2.
C. un =

D. 4.
n3 − 3n
.
n+1

Câu 37. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. .
C. −2.
2

log 2x
Câu 38. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
2x ln 10
x ln 10
2x3 ln 10

D. un = n2 − 4n.

1
D. − .
2

D. y0 =

1 − 2 log 2x
.
x3
Trang 3/10 Mã đề 1



Câu 39. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 40. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y z−1
.
B.
=
=

.
A. = =
1 1
1
2
2
2
x y−2 z−3
x−2 y−2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
3
4
Câu 41. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
36
6
Câu 42. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4

4
4
4
Câu 43. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.

D. e.

Câu 44. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
4
2
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.

B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.

Câu 45. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 46. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
6
3

1
Câu 48. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
Câu 49. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 50. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 8 mặt.

D. 6 mặt.
Trang 4/10 Mã đề 1


Câu 51. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 4.
D. 6.
Câu 52. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.

D. Tăng lên n lần.
Câu 53. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 54. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
6
12
24
Câu 55. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 56.
đề nào sau đây

Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.
Z
B.
Z
C.
Z
D.

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 57. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.


C. 20.

D. 8.
! x3 −3mx2 +m
1
Câu 58. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Câu 59. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 16 m.
D. 12 m.
Câu 60. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
1
Câu 61. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.

Câu 62. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).

D. (2; 2).
Trang 5/10 Mã đề 1


Câu 63.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].

C. m ∈ [−1; 0].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].

Câu 64. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?

Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 65. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 6.
D. V = 4.
Câu 66. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
2x + 1
Câu 67. Tính giới hạn lim
x→+∞ x + 1
A. −1.
B. 2.

C. {4; 3}.

C.

1
.
2

D. {3; 3}.


D. 1.

Câu 68. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 5}.
x+1
Câu 69. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. .
D. 1.
4
3
Câu 70. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 71. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 + 4 2.
C. 3 − 4 2.



D. −3 − 4 2.

Câu 72. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

D.

C.

sin n
.
n

n+1
.
n

Câu 73. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = 1.

C. f 0 (0) = ln 10.


D. f 0 (0) =

1
.
ln 10

Câu 74. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
log2 a
loga 2
Câu 75. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 9 lần.
Câu 76. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.

C. 11 năm.
D. 13 năm.
Trang 6/10 Mã đề 1


Câu 77. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −2.
D. −7.
A. −4.
B.
27
!
3n + 2
2
Câu 78. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 4.
D. 3.
2

2

sin x
Câu 79.

và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần lượt là
√ =2
√ [3-c] Giá trị nhỏ nhất √
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
A. 2 2 và 3.

Câu 80. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
2

Câu 81. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e
Câu 82. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D.


2
.
e3

D. Khối bát diện đều.

Câu 83. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. − < m < 0.
D. m ≤ 0.
A. m > − .
4
4
Câu 84. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.

Câu 85. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 3

πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
2
3
Câu 86. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
D.
Câu 87. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

A. 5.
B. 5.
C. 25.

f (x)dx = F(x) + C.




1
.
5
Câu 88. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. .
C. 3.
D. .
2
2
 π
Câu 89. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
A.
e .
B. e .
C. 1.
D.
e .

2
2
2
Z 1
6
2
3
Câu 90. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 2.

C. 6.

D.

D. 4.
Trang 7/10 Mã đề 1


Câu 91. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 3.

D. 2.


Câu 92. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
Câu 93. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 94. Cho
x2
1
A. −3.
B. 1.
C. 3.
Câu 95. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.

C. 8.

D. Tứ diện đều.


D. 0.
D. 30.

Câu 96. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. 6.
D. .
2
2
Câu 97. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
Câu 98. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.

B. 20.
C. 3, 55.
D. 15, 36.
Câu 99. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

C. 0.

D. 7.

C. D = (0; +∞).

D. D = R \ {1}.

Câu 100. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 9.

Câu 101. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.


d = 300 .
Câu 102. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
A. V =
.
B. V = 3a3 3.
C. V =
.
D. V = 6a3 .
2
2
n−1
Câu 103. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
D. 0.
Câu 104. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.

C. 30.

D. 8.


Câu 105. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = 4 + .
C. T = e + 3.
D. T = e + .
e
e
Trang 8/10 Mã đề 1


Câu 106. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

C. 9 cạnh.

Câu 107. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; +∞).
C. (−∞; 6, 5).
2n + 1
Câu 108. Tính giới hạn lim
3n + 2
1
2
3

A. .
B. .
C. .
2
3
2


4n2 + 1 − n + 2
Câu 109. Tính lim
bằng
2n − 3
A. +∞.
B. 1.
C. 2.

D. 10 cạnh.
D. (4; 6, 5].

D. 0.

3
.
2
Câu 110. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
D.

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (I) sai.
sai.
4x + 1
bằng?
Câu 111. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −1.
C. 2.

D. Câu (II) sai.

D. −4.

Câu 112. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

Câu 113. Tính lim
x→5

C. 1.


D. 2.

x2 − 12x + 35
25 − 5x
2
B. .
5

2
C. − .
D. −∞.
5
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 114. Cho hình chóp S .ABC có BAC
(ABC). Thể

√ tích khối chóp S .ABC
√là
3
3

a 3
a 3
a3 2
A.
.
B.
.
C.

.
D. 2a2 2.
12
24
24
log7 16
Câu 115. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. 2.
C. −2.
D. −4.
q
2
Câu 116. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
A. +∞.

Trang 9/10 Mã đề 1


5

Câu 117. Tính lim
n+3
A. 1.
B. 3.

C. 2.

D. 0.

Câu 118. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
C. 4.
D. 2.
1
Câu 119. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 120. Xét hai câu sau
Z
Z
Z

(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.

C. Cả hai câu trên sai.

D. Chỉ có (II) đúng.

Câu 121. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.

C. 3.

D. 2.

Câu 122. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.

C. 2
.
D. √
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
1 − 2n
bằng?
Câu 123. [1] Tính lim
3n + 1
2
2
1
A. − .
B. .
C. .
D. 1.
3
3
3
1 + 2 + ··· + n
Câu 124. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .

B. lim un = 0.
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 125. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3
5a 3
a 3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
Câu 126. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.

B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
2mx + 1
1
Câu 127. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. 0.
D. −5.
log(mx)
Câu 128. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Trang 10/10 Mã đề 1


Câu 129. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





14 3
20 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3
Câu 130. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

D


3.

4.

5. A
8.

C

6. A
B

9. A
D

10.

11. A

C

12.
14.

D

2.

1. A


13. A

B

16. A
18.

D

15.

B

17.

B

19.

B

20.

C

21.

22.

C


23. A

24.

B

25.

26.

B

27.
C

28.

C
B
D
C

29.

30.

B

31. A


32.

B

33.

B

35.

B

34.

D

36. A
38.

B

40. A

37.

C

39.


C

41. A

42.

B

43.

44.

B

45.

46. A

B

47. A

48.

C

50.

49.
D


C

51. A

52.

B

53.

54.

B

55.

56.

C

57. A

58.

C

59.

60.


C

61. A

62.

D

B
C
C

63.

B

C

65.

64. A

D

66.

D

67.


B

68.

D

69.

B

1


70. A

71. A

72.

D

73.

74.

D

75. A


76. A

77.

78.

C

79. A

80.

C

81.

82.

B
D

85.
B

C

87.

88.


D

89. A

90.

D

91.

92.

C

83. A

B

84. A
86.

C

B

B
C

93.


94. A

95.

D

96. A

97.

D

98.
100.

D
B

102.
104.

99.

C

101. A
D

103.


C
B

105.
D

106.

D

107.

108.

B

109.

110.

B

111. A

112.

C

D


113.

B
B

114.

C

115.

D

116.

C

117.

D

118.

C

119. A

120. A
122.


121.
D

123. A

124. A

125.

126. A

127.

128. A

129. A

130.

B

D

2

B
C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×