TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 6.
C. 2 2.
D. 2.
√
2
Câu 2. Xác định phần ảo của số phức
√
√ z = ( 2 + 3i)
C. 7.
D. 6 2.
A. −7.
B. −6 2.
Câu 1. [3-1214d] Cho hàm số y =
Câu 3. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. Không tồn tại.
D. −7.
Câu 4. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 5. √
Thể tích của tứ diện đều cạnh
√ bằng a
3
3
a 2
a 2
A.
.
B.
.
4
6
√
√
a3 2
a3 2
C.
.
D.
.
2
12
√
Câu 6. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vơ số.
D. 64.
!
1
1
1
Câu 7. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. 2.
D. .
2
3a
Câu 8. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng
cách từ A đến mặt phẳng (S BD) bằng
√
a
a
a 2
2a
A. .
B. .
C.
.
D.
.
3
4
3
3
Câu 9. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Câu 10. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.
D. 4 − 2 ln 2.
Câu 11. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = 0.
D. x = −8.
Câu 12. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
D. 6 mặt.
√
Câu 13. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
3a
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Trang 1/11 Mã đề 1
1
Câu 14. [1] Giá trị của biểu thức log √3
bằng
10
1
A. − .
B. −3.
3
C. 3.
D.
1
.
3
Câu 15. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 64cm3 .
D. 84cm3 .
!2x−1
!2−x
3
3
Câu 16. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).
D. [1; +∞).
Câu 17. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).
Câu 18. Tính lim
A. 0.
n−1
n2 + 2
B. 3.
D. (4; +∞).
C. 2.
D. 1.
Câu 19. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
C. y0 = 1 − ln x.
D. y0 = ln x − 1.
Câu 20. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 21. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 8.
C. 9.
D. 3 3.
√
√
Câu 22. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x
√
A. 3.
B. 3 2.
C. 2 + 3.
D. 2 3.
Câu 23. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. 0.
D. −3.
Câu 24. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.
C. Câu (III) sai.
Câu 25. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.
D. Câu (I) sai.
D. 2.
Câu 26. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 4.
D. 12.
Câu 27. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 27.
C. 12.
D. 18.
2
Trang 2/11 Mã đề 1
Câu 28.
Z Các khẳng định
Z nào sau đây là sai?
A.
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Z
B.
Z
D.
f (x)dx = F(x) +C ⇒
Z
f (u)dx = F(u) +C.
f (x)dx = F(x) + C ⇒
Z
f (t)dt = F(t) + C.
Câu 29. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 5 mặt.
D. 4 mặt.
Câu 30. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
9
15
6
π
Câu 31. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 2.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2 3.
Câu 32. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 33.
có nghĩa
√ Biểu thức nào sau đây không
−3
−1
−1.
B. 0 .
A.
√
C. (− 2)0 .
D. (−1)−1 .
Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
a b2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 35. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Câu 36. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 8%.
D. 0, 6%.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 37. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
.
D. T = 2016.
A. T = 1008.
B. T = 2017.
C. T =
2017
Câu 38. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
3
2
Câu 39. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.
C. 10.
D. 12.
Câu 40. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối lập phương.
Câu 41. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 3/11 Mã đề 1
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
Câu 42. Tính lim
x→2
A. 1.
B. 4.
C. 1.
D. 3.
x+2
bằng?
x
B. 2.
C. 3.
D. 0.
1
Câu 43. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).
Câu 44. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 7 mặt.
D. 6 mặt.
Câu 45. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 46. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
A. 25.
B. 5.
C. 5.
√
D.
1
.
5
Câu 47. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).
C. (−∞; 0) và (2; +∞). D. (0; +∞).
x+2
Câu 48. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 49. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Tăng lên n lần.
D. Không thay đổi.
Câu 50. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 51. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y−2 z−3
A. =
=
.
B.
=
=
.
2
3
−1
2
3
4
x−2 y+2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
2
2
1 1
1
log7 16
Câu 52. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. −2.
C. 4.
D. 2.
Câu 53. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 3.
B. a 6.
C. 2a 6.
D.
.
2
Trang 4/11 Mã đề 1
Câu 54. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
A. − .
B.
.
3
3
!n
1
C.
.
3
!n
4
D.
.
e
Câu 55. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
log 2x
là
Câu 56. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
Câu 57. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 58. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 22.
D. 21.
Câu 59. [1] Đạo hàm của làm số y = log x là
1
1
.
B. y0 = .
A. y0 =
x ln 10
x
C.
1
.
10 ln x
D. y0 =
ln 10
.
x
2
Câu 60. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 5.
D. 4.
Câu 61. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
√
3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
3
9
3
Câu 62. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
Câu 63. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 64. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 65. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 7.
C. 3.
D. 2.
Trang 5/11 Mã đề 1
Câu 66. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
log(mx)
= 2 có nghiệm thực duy nhất
Câu 67. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 69. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.
C. 5.
D. 2.
Câu 70. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 10.
!x
1
1−x
Câu 71. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. log2 3.
B. 1 − log2 3.
C. − log3 2.
D. 27.
D. − log2 3.
√
Câu 72. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
2
6
Câu 73. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m < .
D. m ≤ .
4
4
4
4
x
x
Câu 74. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
Câu 75. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 6.
D. V = 4.
Câu 76. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 77. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 78. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 79. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
A.
.
B.
.
C. a 3.
D.
.
3
2
2
Trang 6/11 Mã đề 1
Câu 80. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
C. 5.
A. 68.
B.
D. 34.
17
Câu 81. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 8.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 82. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
D. lim un = 1.
C. lim un = .
2
[ = 60◦ , S O
Câu 83. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√
√ BC) bằng
√
a 57
2a 57
a 57
A.
.
B. a 57.
.
D.
.
C.
19
17
19
x2 − 3x + 3
Câu 84. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 1.
C. x = 3.
D. x = 2.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 85. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
Câu 86. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. 7, 2.
D. −7, 2.
x−1 y z+1
= =
và
Câu 87. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 88. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 + 19
18 11 − 29
2 11 − 3
9 11 − 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21
3
9
Câu 89.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .
2
12
4
4
Câu 90. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Hai mặt.
D. Ba mặt.
Câu 91. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
B.
.
C. a 3.
D.
.
2
3
π
Câu 92. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
2 π4
1 π3
3 π6
A.
e .
B. e .
C. 1.
D.
e .
2
2
2
Trang 7/11 Mã đề 1
Câu 93. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z 0
u (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
d = 300 .
Câu 94. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3
√
3a 3
a 3
A. V = 6a3 .
B. V =
.
C. V =
.
D. V = 3a3 3.
2
2
Câu 95. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √
√
2a3 6
a3 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
2
4
12
!
x+1
Câu 96. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A.
.
B.
.
C.
.
D. 2017.
2018
2017
2018
Câu 97. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = (−2; 1).
2
D. D = R \ {1; 2}.
Câu 98. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Câu 99. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√
√ N, P bằng
√
√
20 3
14 3
.
B. 8 3.
C. 6 3.
D.
.
A.
3
3
Câu 100. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 101. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
D. m = −1.
Câu 102. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. (1; 2).
D. [−1; 2).
Câu 103. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 9.
C. 5.
D. 0.
Câu 104. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Bát diện đều.
D. Nhị thập diện đều.
Câu 105. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
C. 11 cạnh.
D. 12 cạnh.
Trang 8/11 Mã đề 1
Câu 106. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 107. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 108. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [−3; 1].
D. [1; +∞).
Câu 109. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vơ nghiệm.
C. 2.
D. 3.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 110. [1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m < 0 ∨ m > 4.
Câu 111. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 112. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 113. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. 3.
C. .
D. .
2
2
Câu 114. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 2
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
24
16
48
d = 60◦ . Đường chéo
Câu 115. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
2a3 6
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 116. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
A. 1.
B. .
C. .
D.
.
2
2
2
x2 − 12x + 35
Câu 117. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. −∞.
C. − .
D. .
5
5
Câu 118. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. n3 lần.
D. 3n3 lần.
Trang 9/11 Mã đề 1
Câu 119.
A. 2.
Câu 120.
1
A. − .
e
!
1
1
1
[3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
B. .
C. +∞.
2
[2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. − 2 .
C. − .
e
2e
√
√
D.
5
.
2
D. −e.
Câu 121. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
4
4
Câu 122. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 5.
C. 3.
D. 2.
2
2
Câu 123. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là
√
3
3
3
4a
2a
4a 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 124. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A. − ; +∞ .
; +∞ .
B. −∞; − .
C. −∞; .
D.
2
2
2
2
1 − 2n
bằng?
3n + 1
2
A. 1.
B. − .
3
Câu 126. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
Câu 125. [1] Tính lim
C.
2
.
3
C. {4; 3}.
D.
1
.
3
D. {5; 3}.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 127. [2-c] Cho hàm số f (x) = x
9 +3
1
A. .
B. −1.
C. 2.
D. 1.
2
Câu 128. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 3.
D. 0.
Câu 129. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
a2 5
11a2
a2 2
a2 7
A.
.
B.
.
C.
.
D.
.
8
16
32
4
log2 240 log2 15
Câu 130. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 3.
C. 1.
D. −8.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
C
3.
5.
D
D
D
D
18. A
20.
D
B
24. A
C
17.
B
19.
B
21.
D
23.
D
25. A
26.
D
B
31.
27.
D
29.
D
32.
C
B
34.
35. A
36. A
37. A
38.
39. A
40.
41.
D
B
45.
D
47.
B
D
B
B
C
42.
B
44.
B
48.
D
50.
D
52. A
53.
B
54.
55.
B
56. A
57.
C
46. A
C
51.
C
58.
C
C
60.
59. A
61.
D
D
62.
63. A
C
64. A
65.
67.
C
15.
16.
49.
D
13. A
14. A
43.
B
10.
C
11.
33.
4.
8.
9.
28.
D
6.
7. A
22.
2.
D
66.
68. A
B
69. A
70. A
1
B
71.
D
72. A
73.
D
74.
D
75.
D
76.
D
77. A
78.
D
79. A
80.
81. A
82.
83. A
84.
85.
C
B
86.
B
D
88.
87. A
89.
91.
B
92. A
B
94.
C
D
95.
B
C
96.
97. A
98.
99.
D
90.
C
93.
C
C
B
100. A
101. A
102.
B
103.
B
104.
B
105.
B
106.
B
107. A
108.
C
109. A
110.
C
111. A
112.
C
113.
D
114.
115.
D
116. A
117.
D
118.
C
120.
C
119. A
121.
D
122.
123. A
125.
127.
D
D
124. A
B
126.
D
129. A
2
C
128.
D
130.
D