Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (860)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.22 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. −3.
D. 3.
Câu 2. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 2.
D. 1.
Câu 3. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.
Câu 4. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
n−1
Câu 5. Tính lim 2
n +2
A. 3.
B. 2.



D. 0.

C. {5; 3}.

D. {4; 3}.

C. 0.

D. 1.

Câu 6. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 2
11a
a2 5
a 7
.
B.
.
C.
.

D.
.
A.
8
4
32
16
1
Câu 7. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = −3.
Câu 8. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 1.
C. T = e + 3.
D. T = 4 + .
A. T = e + .
e
e
Câu 9. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.

Câu 10. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 11. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).
Câu 12.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
2

1
= 0.
nk
D. lim un = c (un = c là hằng số).

B. lim



a3 2
C.
.
12

Câu 13. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = a3 2.
B. 2a3 2.
C.
.
3
Câu 14. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.
C. 5.


a3 2
D.
.
4
D. V = 2a3 .
D. 6.
Trang 1/10 Mã đề 1




Câu 15. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 16. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.
D.
1 − 2n
Câu 17. [1] Tính lim
bằng?
3n + 1
2
2
A. .
B. − .
C. 1.
D.
3
3
Câu 18. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D.

5.

1
.

3
5 đỉnh, 9 cạnh, 6 mặt.

Câu 19. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. 25.
D. 5.
A. 5.
B. .
5
Câu 20. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4
Câu 21. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
1
2mx + 1

trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 22. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. −5.
C. 1.
D. 0.


Câu 23. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
.
D.
.
A. 8 3.
B. 6 3.
C.
3
3
Câu 24. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.

C. 8.
D. 12.
Câu 25. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

D. {3; 3}.

!

5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
!4x
!2−x
2
3
Câu 27. Tập các số x thỏa mãn


3 # 2
#
"
!

"
!
2
2
2
2
A. −∞; .
B. −∞; .
C.
; +∞ .
D. − ; +∞ .
3
5
5
3

Câu 26. [2] Phương trình log x 4 log2

Câu 28. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.

.
c+2
c+2
c+3
c+1
Câu 29. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a
3
A. 10a3 .
B. 40a3 .
C.
.
D. 20a3 .
3
Câu 30. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ± 3.
C. m = ±1.
D. m = ±3.
Trang 2/10 Mã đề 1


mx − 4
Câu 31. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.

B. 45.
C. 26.
D. 34.
Câu 32. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. −2e2 .
D. 2e2 .
2−n
Câu 33. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. 1.
D. −1.
1
Câu 34. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 35. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 36. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.

B. −7.
C. −3.

D. Không tồn tại.

Câu 37. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

D. aα+β = aα .aβ .
A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. β = a β .
a
x2 − 9
Câu 38. Tính lim
x→3 x − 3
A. +∞.
B. 3.
C. 6.
D. −3.
1

Câu 39. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = (1; +∞).

Câu 40. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].


67
.
27
Câu 41. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
3
3
3
4a 3
2a 3
2a3
4a
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 42. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).

C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
1
Câu 43. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 1.
D. 2.
A. −2.

B. −4.

C. −7.

D.

Câu 44. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.

D. Vô nghiệm.
2

Câu 45. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .

D. 72cm3 .
Câu 46. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 3/10 Mã đề 1


Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

C. Nếu

f (x)dx =

Z


Câu 47. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.

C. 8.

D. 6.

Câu 48. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 6.
D. 4.
cos n + sin n
Câu 49. Tính lim
n2 + 1
A. 0.
B. +∞.
C. 1.
D. −∞.
Câu 50. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
B. 2.
C. −2.
A. − .
2

D.


1
.
2

2

Câu 51. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log2 3.

D. 1 − log3 2.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.

Câu 52. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 53. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.

D. Cả ba câu trên đều sai.
Câu 54. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).

C. (II) và (III).

D. Cả ba mệnh đề.

0 0 0 0
0
Câu 55.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.

.
A.
7
2
2
3

Câu 56. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 12.
D. 4.
Câu 57. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Trang 4/10 Mã đề 1


Câu 58. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
!
3n + 2
2

Câu 59. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.
Câu 60. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Câu 61. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.

B.
.
C. a 2.
A.
D. 2a 2.
4
2
Câu 62. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.
C. 30.
D. 12.
Câu 63. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
6
3
2

Câu 64. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 9 mặt.

D. 8 mặt.

Câu 65. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 4 mặt.
D. 3 mặt.
x2
Câu 66. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 0.
D. M = e, m = 1.
e
e
Câu 67. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 68. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.

B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 69.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
1
A.
.
B.
.
3
3

!n
4
C.
.
e

Câu 70. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.

!n
5
D. − .
3

D. 1 − sin 2x.
Trang 5/10 Mã đề 1


Câu 71. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 2.
C. 4.
D. 5.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 72. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = .
D. lim un = 1.
2
Câu 73. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Ba cạnh.
D. Năm cạnh.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3

3
a 2
a3 6
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
24
16
48
48
Câu 75. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (0; 1).
Câu 76. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Câu 77. Hàm số y =
A. x = 0.

x2 − 3x + 3

đạt cực đại tại
x−2
B. x = 2.

C. x = 1.

D. x = 3.

Câu 78. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
A. √
.
D.

a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 79. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.


C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 80. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
C. 2.
D. 10.
A. 1.
B. 2.
log(mx)
Câu 81. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 82. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.

A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
un
Câu 83. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. 1.
C. +∞.
D. −∞.
log7 16
Câu 84. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.
C. 4.
D. −2.
Câu 85. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.
C. .

D. a.
2
2
3
Trang 6/10 Mã đề 1


x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. [2; +∞).
D. (2; +∞).
Câu 86. [4-1213d] Cho hai hàm số y =

Câu 87. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.


C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 88. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 89. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng −∞; .
3
!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
x+2
Câu 90. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng

x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vơ số.
D. 3.
Câu 91. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



5a3 3
4a3 3
2a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 92. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.

B. 4 mặt.
C. 9 mặt.
D. 6 mặt.
!x
1
Câu 93. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log3 2.
B. − log2 3.
C. log2 3.
D. 1 − log2 3.
Câu 94. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
2n − 3
Câu 95. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.
C. 1.
D. −∞.
Câu 96. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =

.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e
log2 240 log2 15
Câu 97. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 4.

D. m =

1 − 2e
.
4e + 2

D. 3.

Câu 98. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.

D. 2.
Trang 7/10 Mã đề 1


2

Câu 99. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 5.

D. 3.

Câu 100. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 10.
D. ln 14.
Câu 101. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
C. 20.
!2x−1
!2−x
3
3
Câu 102. Tập các số x thỏa mãn


5

5
A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).

D. 30.

D. [1; +∞).

Câu 103. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 0, 8.
D. 72.


Câu 104. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l √

B. Phần thực là 1√− 2, phần ảo là −√ 3.
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 105. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.

Câu 106. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 5 mặt.

D. 4 mặt.

Câu 107. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.
D. m < 0.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 108. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9

3
Câu 109. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a = loga 2.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a =
loga 2
log2 a
x
Câu 110. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
1
3
B. .
C.
.
D. 1.
A. .
2
2
2
Câu 111. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
7

8
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3

Câu 112. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
 π
x
Câu 113. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. 1.
B.
e .

C. e .
D.
e .
2
2
2
Câu 114. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 8 3.
C. 16.
D. 7 3.
Trang 8/10 Mã đề 1


Câu 115. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
Câu 116. [1229d] Đạo hàm của hàm số y =
A. y0 =

1 − 2 ln 2x
.
x3 ln 10

B. y0 =


2x3

B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.

log 2x

x2

1
.
ln 10

C. y0 =

x+1
bằng
x→−∞ 6x − 2

1 − 2 log 2x
.
x3

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

Câu 117. Tính lim

A.

1
.
3

B. 1.

C.

1
.
6

Câu 118. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. −e.
C. − .
e
e
2x + 1
Câu 119. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. −1.
C. 2.
2


D.

1
.
2

D. −

1
.
2e

D. 1.

Câu 120. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 121.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 2.
C. 3.
D. 1.
A. 5.
Z 3
a
x
a

Câu 122. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
C. P = 28.
D. P = 16.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 123. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là


3
3
3

a
2
a
3
a
3
A. 2a2 2.
B.
.

C.
.
D.
.
24
24
12
Câu 124. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Trục ảo.
Câu 125. [2-c] Cho hàm số f (x) =
A. −1.

B. 2.

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
C. 1.
D. .
2

Câu 126. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√


3
a 15
a 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3
Trang 9/10 Mã đề 1


Câu 127. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
Câu 128. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 14 x.
B. y = log √2 x.



D. y = loga x trong đó a = 3 − 2.



x=t




Câu 129. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2

2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
3
2
Câu 130. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. (−∞; +∞).
B. [−1; 2).
C. [1; 2].
D. (1; 2).
C. y = log π4 x.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3.

4.


D

5.

C

6. A

7.

C

8.

9.

C

10. A

11.

C

12.

13.

16.

B

19.

C
C
D
B
C

18.
C

21.
23.

D

14.

B

15. A
17.

C

2.

D

B

20.

D

22.

D

24.

D

25.

D

26.

27.

D

28.

29.

D


30.

31.

D

32. A

33.

D

34.

D
D

35.

C

36.

37.

C

38.

39.


D

42.

43. A

44. A

45. A

46.
D

C

C
D
C

48. A

49. A
51.

B

40. A

41. A


47.

C

50.
B

C

52. A

53. A

54. A

55.

D

56.

57.

D

58.

B


59.

D

60.

B

62.

B

61.

B

63. A
65.
67.

D

64.

C

66.

C


68.

B
1

C

D


69.

70.

B

B

71.

C

72.

73.

C

74.


D

75.

C

76.

D

77.

C

78.

D

79.

B

C

80. A

81.

D


82.

83. A

84.

C
B

85.

D

86.

87.

D

88.

B

89.

D

90.

B


93.

B

91. A
94.

95. A

C

96.

D

97. A

98.

D

99. A

100.

D

101.


102.

D

103.

107.

B

108. A

109.

B

110.

111.

B

112. A

113.

B

114.
D


115.

B
D
D
C

116. A

117.

C

118.

119.

C

120.

121.

B

122. A

123.


B

124. A

127.

C

106.

104. A

125.

C

C

D
C

126.
D

128.

129. A

130. A


2

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×