TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 1.
C. 3.
D. 2.
Câu 2. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
D.
.
A. 2.
B. 1.
C. 3.
3
2n2 − 1
Câu 3. Tính lim 6
3n + n4
2
B. 1.
C. 2.
D. 0.
A. .
3
1
Câu 4. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 5. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 10.
Câu 6. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
25
5
3
25
Câu 7. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
2
3
6
Câu 8. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. Không tồn tại.
D. 0.
d = 120◦ .
Câu 9. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C.
.
D. 2a.
2
Câu 10. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
n2 − 2
1 − 2n
A. un =
.
B.
u
=
.
C.
u
=
.
D. un =
.
n
n
2
2
2
n
(n + 1)
5n − 3n
5n + n2
Câu 11. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 0, 8.
D. 7, 2.
Trang 1/10 Mã đề 1
Câu 12. Hàm số y = x +
A. −1.
1
có giá trị cực đại là
x
B. 1.
C. 2.
D. −2.
Câu 13. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
x+3
nghịch biến trên khoảng
Câu 14. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 3.
B. 2.
C. 1.
D. Vô số.
1
Câu 15. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
2
Câu 16. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.
D. 3 − log2 3.
Câu 17. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Câu 18. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 3.
D. 5.
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√
√ là
3
3
3
3
8a 3
a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 20. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m ≥ 0.
C. m > 0.
D. m > 1.
√
√
Câu 21. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √
√
A. Phần thực là √2, phần ảo là 1 − √3.
B. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 22. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e.
B. 3.
C. 2e + 1.
D.
2
.
e
! x3 −3mx2 +m
1
Câu 23. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
Câu 24. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. m ≥ 0.
D. − < m < 0.
4
4
Câu 25. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −2.
D. m = −3.
Trang 2/10 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 26. [1226d] Tìm tham số thực m để phương trình
B. m < 0.
A. m ≤ 0.
Câu 27. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.
C. 12.
D. 8.
Câu 28. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 29. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
Câu 30. Tính lim
x→3
A. −3.
x2 − 9
x−3
C. +∞.
B. 6.
D. 3.
Câu 31. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√mặt phẳng (AIC) có diện tích
√
√ hình chóp S .ABCD với
2
2
2
2
a 7
a 5
11a
a 2
.
B.
.
C.
.
D.
.
A.
4
8
16
32
1 + 2 + ··· + n
Câu 32. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 1.
D. lim un = 0.
!2x−1
!2−x
3
3
Câu 33. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [3; +∞).
D. [1; +∞).
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
4
8
Câu 35. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
2a3
4a3 3
4a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 36. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 4.
D. V = 3.
Câu 37.
Z Các khẳng định nào sau
Z đây là sai?
f (u)dx = F(u) +C. B.
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!
Z
Z
Z
0
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).
A.
f (x)dx = F(x) +C ⇒
Z
Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Trang 3/10 Mã đề 1
Câu 39. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 9.
C. 5.
D. 0.
C. 0.
D. 1.
Câu 40. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.
x→1
B. 2.
Câu 41. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 43. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. −2e2 .
D. 2e4 .
1 − xy
Câu 44. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√
√
√
√ y.
2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
A. Pmin =
21
3
9
9
Câu 45. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 8.
D. 20.
Câu 46. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 7 mặt.
D. 6 mặt.
Câu 47. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. 4 − 2 ln 2.
D. −2 + 2 ln 2.
log(mx)
Câu 48. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
Câu 49. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
c a2 + b2
b a2 + c2
abc b2 + c2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
1 − n2
Câu 50. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. .
D. 0.
2
2
3
d = 60◦ . Đường chéo
Câu 51. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
12 + 22 + · · · + n2
Câu 52. [3-1133d] Tính lim
n3
1
2
A. .
B. 0.
C. .
D. +∞.
3
3
Trang 4/10 Mã đề 1
Câu 53. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.
Z 3
x
a
a
Câu 54. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = −2.
D. P = 16.
2
x
Câu 55. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
A. M = , m = 0.
e
e
2−n
Câu 56. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 0.
D. 2.
1
Câu 57. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 3.
D. 1.
tan x + m
Câu 58. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
Câu 59. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc
√
√ với đáy và S C = a 3.3 √
a3 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
4
12
2
9
Câu 60. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
24
6
Câu 61. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. n2 lần.
D. 3n3 lần.
2
Câu 62. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±3.
C. m = ± 2.
D. m = ±1.
Câu 63. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 64. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 4.
D. 6.
Câu 65. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].
D. [−1; 2).
Câu 66. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 67. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
C. 30.
D. 12.
Trang 5/10 Mã đề 1
Câu 68. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 69. Tính lim
x→5
A. −∞.
x2 − 12x + 35
25 − 5x
2
B. − .
5
C. +∞.
D.
2
.
5
Câu 70. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 71. Dãy số nào có giới hạn bằng 0?
!n
6
n3 − 3n
A. un =
.
B. un =
.
n+1
5
!n
−2
D. un =
.
3
C. un = n − 4n.
2
Câu 72. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 73. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 74. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m ≥ .
A. m > .
4
4
4
4
d = 30◦ , biết S BC là tam giác đều
Câu 75. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
16
26
9
Câu 76. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.
√
Câu 78. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
A. V = 2a3 .
B. 2a3 2.
C.
.
D. V = a3 2.
3
4x + 1
Câu 79. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. 2.
D. −1.
Câu 77. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 80. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 4.
D. 0, 5.
Câu 81. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+1
c+2
D.
3b + 2ac
.
c+3
Trang 6/10 Mã đề 1
Câu 82. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B. m =
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 83. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. [−3; +∞).
D. (−∞; −3].
Câu 84. [1] Đạo hàm của làm số y = log x là
1
1
B.
.
A. y0 = .
x
10 ln x
C. y0 =
ln 10
.
x
Câu 85. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.
B. −∞.
C. 0.
Câu 86. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.
B. y0 = 2 x . ln 2.
C. y0 =
D. y0 =
1
.
x ln 10
un
bằng
vn
D. +∞.
1
.
ln 2
D. y0 =
1
2 x . ln
x
.
ln x p 2
1
Câu 87. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
B. .
C. .
D. .
A. .
9
3
3
9
Câu 88. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 9.
D. 6.
2
2
Câu 89. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 90. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 1.
D. 5.
Câu 91. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2, 4, 8.
Câu 92. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 3.
C. 2.
D. 1.
Trang 7/10 Mã đề 1
Câu 93. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Một mặt.
C. Bốn mặt.
D. Hai mặt.
Câu 94. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log π4 x.
A. y = log 41 x.
C. y = log √2 x.
Câu 95. Tính lim
x→1
A. 3.
D. y = loga x trong đó a =
x3 − 1
x−1
B. +∞.
C. −∞.
√
3 − 2.
D. 0.
Câu 96. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
a 57
a 57
A.
.
B.
.
C. a 57.
D.
19
17
Câu 97. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
.
B. P = 2.
C. P = 2i.
D.
A. P =
2
Câu 98. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 2.
D.
[ = 60◦ , S O
a. Góc BAD
√
2a 57
.
19
√
−1 − i 3
P=
.
2
6.
Câu 99. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
.
B.
.
C. .
D.
.
A.
9
9
9
9
π π
Câu 100. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
Câu 101. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
a 3
2a 3
.
C.
.
D.
.
A. a 3.
B.
2
2
3
Câu 102. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
2
Câu 103. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e
D.
2
.
e3
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 104. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
Câu 105. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 106. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Trang 8/10 Mã đề 1
Câu 107. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
B.
.
C. .
D.
.
A. .
5
10
5
10
Câu 108. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.
C. 8.
D. 20.
Câu 109.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
dx = x + C, C là hằng số.
A.
Z
C.
1
dx = ln |x| + C, C là hằng số.
x
B.
Z
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
0dx = C, C là hằng số.
√
Câu 110. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
a3 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
36
6
18
6
Câu 111. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 10.
D. 27.
Câu 112. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Câu 113.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A.
.
B.
.
C.
.
12
2
4
Câu 114. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D.
3
.
4
D. Khối tứ diện đều.
Câu 115. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (2; 4; 3).
D. (1; 3; 2).
Câu 116. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.
C. 4.
D. 24.
Câu 117. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 118. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lập phương.
D. Hình lăng trụ.
x+2
Câu 119. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. 1.
D. Vô số.
cos n + sin n
Câu 120. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 121. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
A. 20a3 .
B.
.
C. 10a3 .
D. 40a3 .
3
Trang 9/10 Mã đề 1
Câu 122. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 123. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 124. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.
C. 2.
D. 3.
2n + 1
Câu 125. Tính giới hạn lim
3n + 2
1
2
3
C. .
D. .
A. 0.
B. .
2
2
3
Câu 126. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 127. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 128. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 24 m.
D. 8 m.
2x + 1
Câu 129. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. 2.
C. .
D. −1.
2
Câu 130. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 10 mặt.
D. 6 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
3.
D
4. A
5.
C
D
7.
C
9.
11. A
13.
6.
D
8.
D
10.
D
12.
D
14. A
B
15. A
16. A
17. A
18. A
19. A
20. A
D
21.
22.
B
B
23.
C
24.
25.
C
26.
27.
C
28. A
29.
31.
D
30.
B
D
34.
C
D
36.
37. A
39.
B
32. A
33.
35.
C
C
38. A
B
40.
41.
D
C
42. A
43. A
44.
B
45. A
46.
B
47. A
48. A
49.
51.
D
D
54.
D
58. A
60. A
B
62.
61. A
63.
D
64. A
C
66.
65. A
67.
B
56. A
B
57.
59.
B
52. A
B
53.
55.
50.
68. A
C
1
D
69.
D
70.
71.
D
72. A
C
73.
74.
B
76. A
75. A
77.
79.
D
C
B
81. A
78.
B
80.
B
82. A
D
83.
C
85.
86.
D
87.
D
84.
B
88. A
89.
C
90. A
91.
C
92.
93.
C
94.
95. A
B
C
96.
D
D
97.
B
98.
99.
B
100.
B
102.
B
101.
103.
D
B
104.
105. A
106.
C
B
107.
B
108.
109.
B
110.
C
111.
B
112.
C
113.
114.
C
115. A
117.
119.
C
B
D
116.
B
118.
B
120. A
121. A
122.
123. A
124. A
125.
D
C
126.
D
127.
B
128.
129.
B
130.
2
D
B
D