TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Giá √
trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2
√
A. −3 + 4 2.
B. 3 − 4 2.
C. 3 + 4 2.
4x + 1
Câu 2. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
C. −1.
√
D. −3 − 4 2.
D. 4.
Câu 3. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
3
Câu 4. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e.
D. e5 .
Câu 5. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 6. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
C. 6.
Câu 7. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình lập phương.
D. 8.
D. Hình chóp.
Câu 8. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 9. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.
C. 10.
D. 30.
Câu 10. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 82.
B. 81.
√
x2 + 3x + 5
Câu 11. Tính giới hạn lim
x→−∞
4x − 1
1
A. 1.
B. .
4
C. 64.
D. 96.
1
C. − .
4
D. 0.
8
x
Câu 12. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (II) sai.
C. Khơng có câu nào D. Câu (III) sai.
sai.
Trang 1/10 Mã đề 1
Câu 13.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
Câu 14. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.
C. 30.
Câu 15. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.
1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).
D. 12.
Câu 16. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
Câu 17. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
Câu 18.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒
A.
Z
C.
f (x)dx = F(x) +C ⇒
f (t)dt = F(t) + C. B.
Z
f (u)dx = F(u) +C. D.
Z
Z
D. y0 = 1 − ln x.
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Câu 19. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 20. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
a 5
a 2
a 7
11a
.
B.
.
C.
.
D.
.
A.
32
16
4
8
Câu 21. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
√
Câu 22. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
a3 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
36
18
6
x−3
Câu 23. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. +∞.
C. 1.
D. 0.
√3
4
Câu 24. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
2
7
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 25. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −12.
D. −5.
Trang 2/10 Mã đề 1
x+3
Câu 26. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 27. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 3.
D. 2.
Câu 28. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 11.
D. 12.
Câu 29. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 30. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
v! n
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 31. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − 2 .
D. −e.
A. − .
2e
e
e
Câu 32. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m ≥ 0.
D. m > − .
4
4
Câu 33. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (II) và (III).
C. (I) và (II).
D. Cả ba mệnh đề.
Câu 34. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
√
√
4n2 + 1 − n + 2
Câu 35. Tính lim
bằng
2n − 3
3
A. 2.
B. 1.
C. +∞.
D. .
2
0 0 0 0
Câu 36. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; −3; −3).
Câu 37. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
D. e.
Trang 3/10 Mã đề 1
√
Câu 38. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 63.
D. 64.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 39. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
8
1
A. .
B. .
C. .
D. .
3
9
9
3
Câu 40. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.
Câu 41. [1] Tập xác định của hàm số y = 4
A. D = R \ {1; 2}.
B. D = R.
x2 +x−2
D. {3; 4}.
là
C. D = (−2; 1).
D. D = [2; 1].
Câu 42. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.
D. y = loga x trong đó a =
C. y = log π4 x.
√
3 − 2.
Câu 43. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là
√
3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
2
4
Câu 44. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
8
5
7
A.
; 0; 0 .
; 0; 0 .
; 0; 0 .
B.
C. (2; 0; 0).
D.
3
3
3
Câu 45. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 46. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n
B. lim qn = 0 (|q| > 1).
D. lim un = c (un = c là hằng số).
2
Câu 47. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 8.
D. 5.
Câu 48. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 49. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 50. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
Câu 51. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Trang 4/10 Mã đề 1
Câu 52. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 53. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Câu 54. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
Câu 55. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√
√ C là
3
a3 3
a3
a 3
.
B.
.
C.
.
D. a3 .
A.
2
6
3
Câu 56. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.
D. −1 + sin x cos x.
!
x+1
Câu 57. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
.
B. 2017.
C.
.
D.
.
A.
2018
2017
2018
3a
Câu 58. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
2a
a
a
a 2
.
B.
.
C. .
D. .
A.
3
3
3
4
Câu 59. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −e2 .
C. −2e2 .
D. 2e4 .
Câu 60. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
A. 2a 2.
B. a 2.
C.
.
D.
.
2
4
Câu 61. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m < 0.
D. m = 0.
Câu 62. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 63. [1-c] Giá trị của biểu thức
A. −2.
B. 2.
log7 16
log7 15 − log7
15
30
bằng
C. −4.
Câu 64. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.
Câu 65. [1] Tính lim
A. 1.
1 − 2n
bằng?
3n + 1
1
B. .
3
2
C. − .
3
D. 4.
D. 10 mặt.
D.
2
.
3
Trang 5/10 Mã đề 1
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
3
3
a 3
a3 6
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
24
48
48
16
Câu 67.
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
A. 10.
B. 2.
C. 2.
D. 1.
tan x + m
Câu 68. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
[ = 60◦ , S O
Câu 69. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
17
19
19
12 + 22 + · · · + n2
Câu 70. [3-1133d] Tính lim
n3
1
2
B. 0.
C. .
D. +∞.
A. .
3
3
Câu 71. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
A. lim [ f (x) + g(x)] = a + b.
x→+∞
f (x) a
= .
C. lim
x→+∞ g(x)
b
x→+∞
B. lim [ f (x)g(x)] = ab.
x→+∞
D. lim [ f (x) − g(x)] = a − b.
x→+∞
Câu 72. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 73. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. 3.
C. 1.
Câu 74. [1-c] Giá trị biểu thức
A. −8.
D. 4.
Câu 75. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
1
Câu 76. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 77. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 6/10 Mã đề 1
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
Câu 78. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 1.
1
3|x−1|
= 3m − 2 có nghiệm duy
C. 2.
D. 4.
√
Câu 79. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vơ số.
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
12
4
6
Câu 81. Hàm số nào sau đây không có cực trị
x−2
A. y =
.
B. y = x4 − 2x + 1.
2x + 1
C. y = x3 − 3x.
1
D. y = x + .
x
Câu 82. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. 2
.
C.
.
D.
.
A. √
√
√
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 83. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 20.
D. 30.
C. +∞.
D. 0.
!n
5
C.
.
3
!n
1
D.
.
3
Câu 84. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.
Câu 85. Dãy
!n số nào sau đây có giới
!n hạn là 0?
4
5
B.
.
A. − .
3
e
Câu 86. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.
B. 1.
C. −∞.
un
bằng
vn
D. 0.
Câu 87. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. 0.
D. −6.
Câu 88. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 89. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.
2
2
√
Câu 90. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
6
3
Trang 7/10 Mã đề 1
Câu 91.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.
A.
Z
C.
B.
Z
1
dx = ln |x| + C, C là hằng số.
x
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
dx = x + C, C là hằng số.
! x3 −3mx2 +m
1
Câu 92. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ R.
D. m ∈ (0; +∞).
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 93. [2-c] Cho hàm số f (x) = x
9 +3
1
A. −1.
B. 1.
C. 2.
D. .
2
Câu 94. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
x−2
Câu 95. Tính lim
x→+∞ x + 3
2
B. 2.
C. −3.
A. − .
3
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
a3 3
a3 3
A.
.
B. a3 3.
C.
.
3
6
!x
1
1−x
Câu 97. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. log2 3.
B. 1 − log2 3.
C. − log3 2.
Câu 98. [3-12214d] Với giá trị nào của m thì phương trình
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
1
3|x−2|
D. 1.
⊥ (ABCD). Mặt bên (S CD)
√
2a3 3
D.
.
3
D. − log2 3.
= m − 2 có nghiệm
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 99. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
4
2
8
Câu 100. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.
D. 0.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 101. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 102. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 1.
B. 3.
C. 2.
D. 5.
1
Câu 103. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = (−∞; 1).
D. D = R.
Câu 104. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
Trang 8/10 Mã đề 1
6
Câu 105. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 6.
B. 2.
C. 4.
D. −1.
Câu 106. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
D. f 0 (0) = 1.
ln 10
Câu 107. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
A. f 0 (0) = 10.
Câu 108. Hàm số y =
A. x = 3.
B. f 0 (0) = ln 10.
C. f 0 (0) =
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
C. x = 0.
D. x = 1.
Câu 109. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B. a.
C.
.
D. .
3
2
2
3
2
x
Câu 110. [2] Tìm m để giá trị nhỏ nhất
2
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Câu 111. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.
Câu 112. [3-1132d] Cho dãy số (un ) với un =
1
A. lim un = .
2
C. lim un = 0.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
Câu 113. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 114. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. 0, 8.
D. −7, 2.
Câu 115. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
D. Khối lập phương.
C. Khối bát diện đều.
Câu 116. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Ba cạnh.
D. Năm cạnh.
2
4
3
Câu 117. Cho z là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
√
−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
Câu 118. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 9/10 Mã đề 1
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
Câu 119. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Bát diện đều.
D. Tứ diện đều.
Câu 120. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 27cm3 .
D. 46cm3 .
√
Câu 121. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. [3; 4).
C. (1; 2).
D. 2; .
2
2
Câu 122. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
D. 68.
B. 34.
C.
A. 5.
17
Câu 123. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (II) đúng.
C. Chỉ có (I) đúng.
Câu 124. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Một mặt.
0
0
D. Cả hai câu trên sai.
D. Ba mặt.
0
Câu 125. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
24
36
Câu 126. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.
C. 144.
D. 4.
Z 1
Câu 127. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
C. 0.
D. .
2
4
Câu 128. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
A. 1.
B.
Trang 10/10 Mã đề 1
Câu 129. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a
√
√
3
3
a
a 5
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
3
25
5
25
√
Câu 130. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
B
5.
7.
D
B
D
4.
D
6.
D
8. A
9. A
10.
C
11.
13.
2.
B
12.
C
14.
C
15.
C
16.
17.
C
18.
D
19.
D
C
25.
29.
D
C
24.
C
26.
C
D
B
32.
C
33.
B
37.
D
39.
D
34.
B
36.
B
38.
B
40. A
C
42. A
B
43. A
44. A
45.
46.
C
B
48.
47. A
49.
D
51.
52.
C
54.
55. A
56.
57.
D
50. A
53. A
59.
D
22.
30.
31. A
41.
C
28.
27. A
35.
D
20.
21. A
23.
B
D
58.
C
B
C
B
60.
C
61. A
63.
C
64. A
65.
C
B
66.
B
67.
68.
B
69.
1
D
C
70. A
71.
72. A
73.
74. A
75. A
76. A
77.
78.
B
79.
80.
B
81. A
82.
C
B
C
B
83.
84.
D
85.
86.
D
87. A
88. A
D
90.
C
C
D
89.
B
91.
B
B
92.
B
93.
94.
B
95.
D
97.
D
96. A
98.
D
100.
D
102.
D
101.
C
104.
106.
99. A
103.
D
B
C
105.
D
107.
B
D
108.
109.
B
110. A
111. A
112. A
113.
D
115.
D
114.
116.
D
C
117.
118. A
119. A
120.
C
121. A
122.
C
123. A
124. A
126.
C
125.
B
127.
B
129.
128. A
130.
C
C
2
D