Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (808)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.38 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Z
Câu 1. Cho
A.

1
.
4

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

B.

1
.
2

C. 1.


Câu 2. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).
1
có giá trị cực đại là
x
A. 1.
B. −1.
log7 16
Câu 4. [1-c] Giá trị của biểu thức
log7 15 − log7
A. 4.
B. −2.

D. 0.

D. (−∞; 6, 5).

Câu 3. Hàm số y = x +

C. −2.
15
30

D. 2.

bằng
C. 2.


Câu 5. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. 1.

D. −4.
D. Hai mặt.

Câu 6. [1-c] Giá trị biểu thức
A. 3.

Câu 7. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Bốn mặt.
Z 3
x
a
Câu 8. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và

d
0 4+2 x+1
P = a + b + c + d bằng?

A. P = −2.
B. P = 16.
C. P = 28.

D. −8.
D. Ba mặt.
a
là phân số tối giản. Giá trị
d
D. P = 4.

Câu 9. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 10.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
5
.
B. − .
A.
3
3

!n
!n
1

4
C.
.
D.
.
3
e

Câu 11. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
Câu 12. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
1
2
A.
.
B.
.
C. .
D. .
10
10
5
5



4n2 + 1 − n + 2
Câu 13. Tính lim
bằng
2n − 3
3
A. 2.
B. 1.
C. .
D. +∞.
2
Trang 1/10 Mã đề 1


Câu 14. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
5
7
8
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.

3
3
3
Câu 15. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4
3
2
Câu 16. Hàm số y = x − 3x + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 0.
D. 2.
 π
Câu 17. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6

1 π3
B.
e .
C. 1.
D.
e .
A. e .
2
2
2
ln x p 2
1
Câu 18. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 19. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng


a
a
a 3
A. a.
B. .
C. .
D.
.
3
2
2
Câu 20. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. −7, 2.
D. 72.
1 − 2n
Câu 21. [1] Tính lim
bằng?
3n + 1
2
2
1
A. − .
B. 1.
C. .
D. .
3
3

3
2
2
0
Câu 22. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 + 2 sin 2x.
Câu 23. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

Câu 24. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 4.
D. V = 3.
Câu 25. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 1.
C. 2.

D. .
2
2
x−3 x−2
x−3
x−2
Câu 26. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 27. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 28. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
Trang 2/10 Mã đề 1


B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 29. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).

B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 30. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 31. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
12 + 22 + · · · + n2
n3
1

B. .
3

C. x = 2.

D. x = 0.

Câu 32. [3-1133d] Tính lim
A. +∞.

C.

2
.
3

D. 0.

Câu 33. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
23
1637
.
B.
.
C.
.
D.

.
A.
4913
4913
4913
68
Câu 34. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 35. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 2.
B. 3.
C.
.
D. 1.
3
Câu 36. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất

√ của |z|
A. 2.
B. 3.
C. 1.
D. 5.
Câu 37. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {5; 3}.

D. {3; 4}.

Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 2
a3 3
A.
.
B.
.
C.
.

D.
.
48
48
16
24
Câu 39. Mệnh đề
!0 nào sau đây sai?
Z
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Trang 3/10 Mã đề 1


Câu 40. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3

A.
.
B.
.
C.
.
D.
.
12
12
6
4
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 41. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.

3
9
9
21
Câu 42. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 2.

C. 1.

D. 3.

Câu 43. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

C. 30.

D. 8.

Câu 44. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
2


Câu 45. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 5.
C. 2.

D. 4.

Câu 46. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
2
2
2

!
1
D. −∞; − .
2

1
Câu 47. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3


một đoạn có độ dài bằng 24.
A. m = −3.
B. m = 4.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.
Câu 48. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
Câu 49. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 50. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.

D. {3; 3}.

Câu 51. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.


D. 8.

C. 4.

Câu 52. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
D. 8.
A. 9.
B. 27.
C. 3 3.
x+2
Câu 53. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 54. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.

C. 12.

D. 30.
Trang 4/10 Mã đề 1






x = 1 + 3t




Câu 55. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=

−1
+
2t
x
=
1
+
7t
x
=
1
+
3t
x = −1 + 2t

















A. 
.
C. 
D. 
y = −10 + 11t . B. 
y=1+t
y = 1 + 4t .
y = −10 + 11t .
















z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Câu 56. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3
a3 3
a3 3
3
.
C.
.
D.
.
A. a .
B.
3
3
9
Câu 57. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
.
C.
.
D.

.
B.
2
3
6
Câu 58. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 0.

C. 2.

D. 1.

Câu 59. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 27.
D. 18.
A. 12.
B.
2
1
Câu 60. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.

C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 61. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = −21.
D. P = 21.
Câu 62. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 10a .
B. 20a .
C. 40a .
D.
.
3
Câu 64. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a



a3 5
a3
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
25
3
5
25
Câu 65. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 66. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. .
C. 3.
e

D. 2e + 1.
Trang 5/10 Mã đề 1



Câu 67. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
24
36

4x + 1
Câu 68. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −1.
C. 4.
D. −4.
Câu 69. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.

D. 12.

Câu 70. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1134 m.
C. 1202 m.
D. 2400 m.
Câu 71. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > −1.

D. m > 0.

Câu 72. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.

B. −5.
C. Không tồn tại.

D. −3.

Câu 73. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −12.
D. −9.
Câu 74. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = 4 + .
A. T = e + 3.
B. T = e + .
e
e
q
Câu 75. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].

Câu 76. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 77. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
Câu 78. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 1.

D. 3.

Câu 79. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 80. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
Trang 6/10 Mã đề 1



(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Khơng có câu nào D. Câu (II) sai.
sai.
Câu 81. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.

C. 4.

D. 1.

Câu 82. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 48cm3 .
D. 84cm3 .

Câu 83. Thể tích của khối lập phương


cạnh
bằng
a
2

3


2a 2
A. 2a3 2.
.
C. V = a3 2.
B.
D. V = 2a3 .
3
Câu 84. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.

.
A.
12
4
8
4
Câu 85. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 86. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 87. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.

C. 30.

D. 20.

Câu 88. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.


D. 6.

Câu 89. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

a2 7
a2 2
11a2
a2 5
A.
.
B.
.
C.
.
D.
.
8
4
32
16
1
Câu 90. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.

A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
x3 − 1
Câu 91. Tính lim
x→1 x − 1
A. −∞.
B. +∞.

C. 3.

D. 0.
Trang 7/10 Mã đề 1





x=t




Câu 92. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I

thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
log 2x
Câu 93. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =

.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10
2x ln 10
d = 30◦ , biết S BC là tam giác đều
Câu 94. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13

9
26
16
Câu 95. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
log2 a
loga 2
Câu 96. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 97. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 98. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.


C. 1.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

1
Câu 99. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.

Câu 100. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 108.
D. 6.
Câu 101.
[1233d-2] ZMệnh đề nào sau đây sai?
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
2−n
Câu 102. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 0.

C. −1.

D. 2.
Trang 8/10 Mã đề 1


Câu 103. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.


C. {4; 3}.

D. {3; 4}.

Câu 104. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
D. √
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 105. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.

B. y0 = .
C.
.
D. y0 =
.
x
x
10 ln x
x ln 10
Câu 106. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. .
C. 1.
D. 3.
2
2
Câu 107. Biểu thức nào sau đây√khơng có nghĩa

−3
−1.
C. (− 2)0 .
D. (−1)−1 .
A. 0−1 .
B.
x−3
Câu 108. [1] Tính lim
bằng?

x→3 x + 3
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 109. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.
D. 3 mặt.
2

Câu 110. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 6.

D. 7.

0

Câu 111. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
Câu 112. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac

3b + 2ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+3
c+1
c+2
c+2
Câu 113. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
x2
Câu 114. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = 0.
e
e

Câu 115. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 116. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n lần.
D. n2 lần.
Trang 9/10 Mã đề 1


Câu 117. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.

D. 2 nghiệm.


Câu 118. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 5.
D. 7.
2
2
Câu 119. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
D. f 0 (0) = ln 10.
ln 10
Câu 120. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 3, 55.
D. 24.
3
2
x
Câu 121. [2]

√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2
√ Tìm m để giá trị nhỏ nhất
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.




Câu 122. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
4
4
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là
4a3 3
2a3 3
a3
a3
A.
.
B.

.
C.
.
D.
.
3
3
3
6
Câu 124. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 6 mặt.
D. 3 mặt.
2

2

Câu 125. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều. D. Bát diện đều.
x+1
bằng
Câu 126. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. 1.
C. 3.

D. .
4
3
[ = 60◦ , S O
Câu 127. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57
.
B.
.
C. a 57.
.
A.
D.
19
19
17
Câu 128. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
[ = 60◦ , S O
Câu 129. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng

a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
2
4
3
Câu 130. Cho z là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z

−1 − i 3
−1 + i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.

2
2
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B
C

3.
5.

2.

B

B

4.

D

6.

D
D


7.

D

8.

9.

D

10.

11.

B

12.

13.

B

14. A

15.

B

16.


17.

B

18. A

C
B
C

19. A

20.

C

21. A

22.

C
C

23.

C

24.


25.

C

26. A

27.

28.

B

D

29. A

30.

B

31. A

32.

B

33. A

34.


B

35. A

36. A

37. A

38. A

39.

40. A

B

41. A

42.

43.

C

45.

44. A
D

47.


B

C

46.

B

48.

B

49. A

50.

C

51. A

52.

C

54.

C
C


53.

C

55.

D

56.

57.

D

58.

B

59.

D

60.

B

61.
63.
65.


C
B
D

67. A
1

62.

D

64.

D

66.

C

68.

C


69.

C

70. A


71.

C

72.

73.

C

74. A

75.

C

76.

77.

B

78.

79.

B

80.


81.

B

82.

83. A

84.

85. A

86.

87.

D
C

93. A

B
C
B
C
D

90.

C


92.

C

94. A
D

95.
97.
99.

D

88. A

89. A
91.

C

96.

C

B

98.
100.


B

C
B

101. A

102.

103. A

104.

B

106.

B

108.

B

105.

D

107. A
109.
111.


C

110.

D

D

112.

B

113.

C

114.

115.

C

116.

C
D
B

117.


D

118. A

119.

D

120.

B

121.

D

122.

B

123. A

124. A

125. A

126. A

127. A


128.

129.

130. A

C

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×