Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (770)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.2 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {3; 4}.

D. {5; 3}.

Câu 2. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 5%.
D. 0, 7%.
log 2x

x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x


A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
1
Câu 4. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. −3 ≤ m ≤ 4.
D. m = −3, m = 4.
Câu 3. [3-1229d] Đạo hàm của hàm số y =

Câu 5. Tính lim
A. 1.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
7

B. .
3

2
D. - .
3

C. 0.


Câu 6. Xác
định
phần
ảo
của
số
phức
z
=
(
2 + 3i)2


A. −6 2.
B. 6 2.
C. 7.

D. −7.

Câu 7. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m < 3.
B. m ≤ 3.
C. m ≥ 3.
D. m > 3.
Câu 8. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 9. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 91cm3 .
D. 84cm3 .
Câu 10. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
8a
5a
A.
.
B. .
C.
.
D.
.

9
9
9
9
9t
Câu 11. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vơ số.
D. 2.
Câu 12. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = ln 10.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = 1.
Trang 1/11 Mã đề 1


Câu 13. Tính lim


2n2 − 1
3n6 + n4

2
.
3
2n + 1
Câu 14. Tìm giới hạn lim
n+1
A. 0.
B. 2.
A. 0.

B.

C. 1.

D. 2.

C. 3.

D. 1.

Câu 15. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=

=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
3
4
2
3
−1
x−2 y+2 z−3
x y z−1
.
D.
=
=
.

C. = =
1 1
1
2
2
2




Câu 16. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. m ≥ 0.
4
4
4


Câu 17. Tìm
giá
trị
lớn
nhất
của
hàm

số
y
=
x
+
3
+
6−x



B. 3 2.
C. 3.
D. 2 3.
A. 2 + 3.
2

2

Câu 18. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 3.
D. 0, 5.
!
1
1
1
+ ··· +

Câu 19. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. +∞.
D. 2.
2
2
Câu 20. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. .
C. 1.
D.
.
2
2
1
Câu 21. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 22. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
B. a 3.
C. a 6.
D.
.
A. 2a 6.
2
Câu 23. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 5.
D. 7.
2
2
Câu 24. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Hai mặt.
D. Ba mặt.
Câu 25. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.





5 13
B.
.
C. 26.
D. 2 13.
A. 2.
13
Câu 26. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu

f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Trang 2/11 Mã đề 1


Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z

0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu

f (x)dx =

Z

Câu 27. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
D. 5.
A. 25.
B. 5.
C. .
5
Câu 28. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
A. m =
triệu.
B.
m
=

triệu.
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
triệu.
D. m =
triệu.
C. m =
3
(1, 12) − 1
3


Câu 29. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (2; 4; 6).
D. (1; 3; 2).
x+3
Câu 30. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vơ số.
Câu 31. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2

A. m = −1.
B. m = 0.
C. m = −2.
√3
4
Câu 32. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
5
A. a 3 .
B. a 8 .
C. a 3 .

D. a 3 .

Câu 33. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. −5.

D. Không tồn tại.

Câu 34. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

D. 4.

C. 2.


D. m = −3.
7

Câu 35. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 36. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
! x3 −3mx2 +m
1
Câu 37. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.

B. m , 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 38. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 68.
C. 5.
D. 34.
A.
17
Trang 3/11 Mã đề 1


Câu 39. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 40. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. 2020.
D. log2 13.

Câu 41. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

Câu 42. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [−1; 2).
C. [1; 2].
Câu 43. [2] Tổng các nghiệm của phương trình 2
A. −6.
B. 5.

D. (−∞; +∞).

x2 +2x

= 82−x là
C. 6.

Câu 44. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a bằng
1
1
A. .
B. −2.
C. − .
2
2

3
x −1
Câu 45. Tính lim
x→1 x − 1
A. 0.
B. +∞.
C. 3.

D. −5.

2

D. 2.

D. −∞.
[ = 60◦ , S A ⊥ (ABCD).
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3
3

a 2
a 3
a
2
A.
.

B.
.
C. a3 3.
D.
.
12
6
4
Câu 47. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

C. 3.

D. 1.

Câu 48. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3

.
B.
.
C.
.
D.
.
A.
12
4
4
8
Câu 49. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 50. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 51. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =

.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
x−2 x−1
x
x+1
Câu 52. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].
Trang 4/11 Mã đề 1


n−1
Câu 53. Tính lim 2
n +2
A. 3.

B. 1.

C. 0.

D. 2.

Câu 54. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 55. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .
2
1
Câu 57. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.

D. −2 ≤ m ≤ −1.

Câu 56. [3-1132d] Cho dãy số (un ) với un =

x+2
đồng biến trên khoảng
Câu 58. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 59. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±1.
D. m = ±3.
Câu 60. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. 6.
C. .
D. .
2
2
x
y

Câu 61. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 18.
C.
.
D. 12.
2
Câu 62. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
Câu 63. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 64. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn

!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.

Câu 65. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Trang 5/11 Mã đề 1


Câu 66. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e.
e
x−3
Câu 67. [1] Tính lim
bằng?

x→3 x + 3
A. 1.
B. 0.
C. +∞.
Câu 68. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

D. 2e + 1.

D. −∞.
D. {3; 3}.

Câu 69. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
D.
.
B.
.
C. a 3.
.

2
2
3



x=t




Câu 70. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2

2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 71. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 72. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −7.
C.
.
D. −4.
27
Câu 73. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 4.
D. ln 12.
Câu 74. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].

B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
Câu 75. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 76. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Câu 77. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
Câu 78. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.

C. 6.

D. 4.

Câu 79. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
Trang 6/11 Mã đề 1


(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (I) sai.
sai.

Câu 80. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.

C. 20.

D. Câu (II) sai.

D. 30.

Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

8a3 3
a3 3
8a3 3

4a3 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
x2
Câu 82. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
A. M = , m = 0.
e
e
Câu 83. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. 3n3 lần.
D. n lần.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là

3

a 3
a3 3
2a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Câu 85. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Khơng tồn tại.
C. 9.

D. 0.

Câu 86. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.


Câu 87. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 4.
D. 36.
Câu 88. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 3.

D. 10.

1
5

Câu 89. [2] Tập xác định của hàm số y = (x − 1) là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).
Câu 90. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x

2
B. − .

5

Câu 91. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.

C.

2
.
5

C. 12.

D. D = R \ {1}.

D. +∞.
D. 8.

Câu 92. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.
Trang 7/11 Mã đề 1



Câu 93. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
1
Câu 94. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 1.
D. 2.
Z 3
a
a
x

Câu 95. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 4.
D. P = 16.
cos n + sin n
Câu 96. Tính lim
n2 + 1
A. 1.
B. −∞.
C. +∞.
D. 0.
d = 120◦ .
Câu 97. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C.
.
D. 2a.
2
Z 1
Câu 98. Cho

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. 1.
C. .
D. 0.
4
2
Câu 99. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
2a
2a 3
4a 3
4a3
A.
.
B.
.
C.
.
D.
.

3
3
3
3
Câu 100. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 101. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {5; 3}.

Câu 102. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = 3S h.
A. V = S h.
2
3
Câu 103. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m > 0.
Câu 104. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .

B. y = x4 − 2x + 1.
x
Câu 105. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.

D. {3; 3}.
D. V = S h.
D. m , 0.

C. y = x3 − 3x.

D. y =

C. 10.

D. 30.

x−2
.
2x + 1

Câu 106. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
Trang 8/11 Mã đề 1



Câu 107. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 15, 36.
D. 24.
Câu 108. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
C. |z| = 17.
D. |z| = 10.
A. |z| = 17.
B. |z| = 10.
1 3
x − 2x2 + 3x − 1.
3
C. (1; +∞).
D. (−∞; 1) và (3; +∞).

Câu 109. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).

B. (−∞; 3).

Câu 110. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
Câu 111. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0 ?
A. Có vơ số.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 112. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 113. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 114. Cho
x2
1
A. 0.
B. 3.
C. −3.
D. 1.
Câu 115. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.

D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 116. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {4; 3}.

D. {5; 3}.

Câu 117. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 0.

D. 1.

Câu 118. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 2.
D. 0.
tan x + m
Câu 119. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
Câu 120. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 18 tháng.
D. 17 tháng.
Trang 9/11 Mã đề 1


Câu 121.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
dx = log |u(x)| + C.
A.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 122. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. a.
C. .
D.

.
3
2
2
Câu 123. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24

8
24
48
Câu 125. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
x+1
bằng
Câu 126. Tính lim
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
2
6
3
0 0 0 0
Câu 127. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab

.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 128. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. .
C. 1.
D. 3.
A. .
2
2
Câu 129. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 130. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.

B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e + 2; m = 1.
D. M = e−2 − 2; m = 1.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

3. A
5.

D

9. A
11.

D

13. A
15.
17.


D

4.

D

6.

C

7.

2.

C

8.

D

10.

D

12.

B

14.


B

16.

B

18.

B

19.

D

20. A

21.

D

22.

C
C

24.

23. A
25.


B

26.

B

27. A

D
B

28. A

29.

C

30.

31.

C

32. A
D

B

34.


D

35. A

36.

D

37. A

38. A

39. A

40.

D

41. A

42.

D

33.

43.

D


44.

B

45.

C

46.

D

47.

C

48.

D

49.

C

50.

D

52.


D

51.

B
C

53.

54.

C

55.

D

56.

D

57.

D

58.

D

60.


D

59. A
61.

B

63.

C

65. A
67.

62.

C

64.

C

66.
68.

B
1

B

D


69.
71.
73.

70.

D
C

72. A

B

74.

75.

C

77.

78.

C

79.


80.

B

81.

82.

B

83.

B
C

89. A

90.

C

91. A

92. A
94.

C
D

96.

100.

D
D

D
C

C

95.

C

97.

C
D
B
D

105. A
107.

C

111.

B


114.

C

109.

B

110.

C

116. A
118.

D

D
B

113.

C

115.

C

117.


C

119.

120.

B

121. A

122.

B

123.

124.

C

125.

126.

C

127. A

130.


B

103.

106. A

128.

D

93.

101.

B

104.

112.

B

99.

C

98.

108.


C

87.

88.

102.

B

85.

84. A
86.

D

B

129.
D

2

D
D
C
C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×