TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1.√Tìm giá trị lớn nhất của hàm
√ số y =
A. 2 3.
B. 3 2.
√
√
x + 3 + 6 − x√
C. 2 + 3.
D. 3.
Câu 2. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là
là
4 √
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
24
36
Câu 3.√ Thể tích của khối lăng trụ tam giác đều có cạnh bằng
√ 1 là:
√
3
3
3
3
.
B. .
C.
.
D.
.
A.
2
4
12
4
Câu 4. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 5. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 6. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).
C. (0; +∞).
D. (−∞; 2).
Câu 7. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
5
8
7
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
A.
3
3
3
Câu 8. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C. x = 1.
D. x = 0.
Câu 9. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
log 2x
là
Câu 10. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
x
2x ln 10
x ln 10
2x ln 10
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. 1.
D. −2 + 2 ln 2.
Câu 12. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).
D. (4; +∞).
Câu 13. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Trang 1/10 Mã đề 1
Câu 14. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
B. 2.
C. 26.
D.
.
A. 2 13.
13
2n + 1
Câu 15. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. .
C. .
D. 0.
2
3
2
Câu 16. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + .
C. T = 4 + .
D. T = e + 3.
e
e
Câu 17. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.
D. Không tồn tại.
Câu 18. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 19. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 1.
C. 2.
Câu 20. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n + n2
(n + 1)2
C. un =
D. 3.
n2 − 3n
.
n2
Câu 21. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = 10.
A. f 0 (0) = 1.
B. f 0 (0) =
ln 10
D. un =
n2 − 2
.
5n − 3n2
D. f 0 (0) = ln 10.
Câu 22. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 23. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 24. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (−∞; 1).
D. (1; +∞).
Câu 25. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 26. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
2
Câu 27. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.
D. 7.
Trang 2/10 Mã đề 1
Câu 28. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Câu 29. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
B. 2
.
D. √
.
.
C. √
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 30. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m > − .
D. m ≥ 0.
4
4
Câu 31. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.
C. y0 = x + ln x.
D. y0 = 1 + ln x.
Câu 32. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
Câu 33. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
1
Câu 34. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 35. [2] Phương trình log x 4 log2
12x − 8
A. Vơ nghiệm.
B. 3.
C. 2.
D. 1.
x−2
Câu 36. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
3
C. 1.
D. 2.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 37. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.
Câu 38. Cho I =
B. m ≤ 0.
Z
3
x
√
dx =
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 16.
Câu 39. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 3.
Câu 40. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
D. P = −2.
1
3|x−1|
= 3m − 2 có nghiệm duy
C. 4.
D. 1.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Trang 3/10 Mã đề 1
Câu 41. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vơ nghiệm.
Câu 42. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
√
3
4
Câu 43. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
x+3
nghịch biến trên khoảng
Câu 44. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 3.
D. 1.
1
Câu 45. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. −1.
D. 2.
Câu 46. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 27.
D. 18.
A. 12.
B.
2
un
Câu 47. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 48. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 49. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 50. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.
C. 5.
D. 3.
Câu 51. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
A.
.
B.
.
C. .
D. .
10
10
5
5
Câu 52. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 3.
C. 1.
D. 2.
Câu 53. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.
1
Câu 54. [1] Giá trị của biểu thức log √3
bằng
10
1
A. 3.
B. −3.
C. .
3
D. 4 mặt.
1
D. − .
3
Trang 4/10 Mã đề 1
Câu 55. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 56. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.
C. Chỉ có (I) đúng.
D. Cả hai đều sai.
Câu 57. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
3
Câu 58. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .
D. e.
Câu 59. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 7.
B. 0.
2
C. 9.
D. 5.
√
Câu 60. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
C.
A. V = 2a3 .
B. 2a3 2.
.
D. V = a3 2.
3
t
9
Câu 61. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. 1.
D. Vô số.
Câu 62. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 24 m.
D. 12 m.
5
Câu 63. Tính lim
n+3
A. 1.
B. 3.
C. 0.
D. 2.
Câu 64. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
3
3
4a 3
2a 3
4a
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 65. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
2n + 1
Câu 66. Tìm giới hạn lim
n+1
A. 1.
B. 3.
C. 0.
D. 2.
Câu 67. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
12 + 22 + · · · + n2
Câu 68. [3-1133d] Tính lim
n3
1
A. .
B. +∞.
3
Câu 69. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.
2
.
3
C. 0.
D.
C. 8.
D. 10.
Trang 5/10 Mã đề 1
[ = 60◦ , S O
Câu 70. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng
√
√
a 57
2a 57
a 57
B.
A. a 57.
.
C.
.
D.
.
17
19
19
x+1
Câu 71. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. 1.
D. .
3
4
Câu 72. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
Câu 73. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.
B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 74. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a =
log2 a
loga 2
Câu 75. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.
D. Khối 12 mặt đều.
Câu 76. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 77. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là
√
a3 6
2a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
4
2
Câu 78. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
4a3 3
8a3 3
8a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 80. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√
√ có độ dài bằng
A. 2.
B. 2 2.
C. 2 3.
D. 6.
Câu 81. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Câu 82. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 8 3.
C. 7 3.
D. 16.
Câu 83. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
Trang 6/10 Mã đề 1
log 2x
là
Câu 84. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
log(mx)
Câu 85. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 86. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 87. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C.
;3 .
D. 2; .
2
2
Câu 88. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.
√
ab.
D. 10 mặt.
Câu 89. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
C.
.
D. 7.
A. 5.
B. .
2
2
Câu 90.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
4
12
2
Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
4
6
12
12
Câu 92. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 0, 8.
D. 7, 2.
Câu 93. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
D. 30.
C. 20.
Câu 94. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
24
8
24
x = 1 + 3t
Câu 95. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
7t
x = 1 + 3t
A.
.
D.
y = −10 + 11t . B.
y = −10 + 11t . C.
y=1+t
y = 1 + 4t .
z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
Câu 96. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 12.
D. 4.
Trang 7/10 Mã đề 1
Câu 97. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 4.
C. 3.
D. 2.
Câu 98. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 99. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = (−2; 1).
√
Câu 100.√ Xác định phần ảo của √
số phức z = ( 2 + 3i)2
A. −6 2.
B. 6 2.
C. −7.
2
D. D = R.
D. 7.
Câu 101. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 102. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
A. 1.
B. 3.
C.
.
D. 2.
3
Câu 103. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
π
Câu 104. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π3
C.
D.
A. 1.
B. e .
e .
e .
2
2
2
√
Câu 105. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
3
πa 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
Câu 106. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 107. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Bốn cạnh.
D. Năm cạnh.
Trang 8/10 Mã đề 1
Câu 108. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
1
Câu 109. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = (1; +∞).
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
3
3
√
a 3
a 3
a 2
.
B.
.
C.
.
D. a3 3.
A.
2
4
2
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 111. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
4035
2017
.
B. 2017.
C.
.
D.
.
A.
2018
2017
2018
!
!
!
4x
1
2
2016
Câu 112. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T = 1008.
D. T =
.
2017
Câu 113. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.
C. 30.
D. 8.
Câu 114. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
2
x − 12x + 35
Câu 115. Tính lim
x→5
25 − 5x
2
2
A. − .
B. −∞.
C. +∞.
D. .
5
5
4x + 1
Câu 116. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. 2.
D. −1.
d = 30◦ , biết S BC là tam giác đều
Câu 117. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
16
9
13
Câu 118. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 119. Tính lim
A. 1.
2n2 − 1
3n6 + n4
B. 2.
C. 0.
D.
2
.
3
Câu 120. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.
D. m = −2.
Câu 121.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
4
5
A.
.
B.
.
e
3
!n
1
D.
.
3
!n
5
C. − .
3
Trang 9/10 Mã đề 1
mx − 4
Câu 122. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 34.
D. 67.
Câu 123. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 3.
B. .
C. 1.
D. .
2
2
3
2
Câu 124. Cho hàm số y = x − 2x + x + 1.! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
D. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng −∞; .
3
2mx + 1
1
Câu 125. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. −2.
D. 0.
cos n + sin n
Câu 126. Tính lim
n2 + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
√
Câu 127. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
a 38
3a 58
3a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 128. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 21.
D. 23.
Câu 129. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 4.
D. 3.
Câu 130. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 15 tháng.
D. 16 tháng.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2. A
D
3.
5.
6. A
B
D
7.
9.
C
4.
B
11. A
8.
C
10.
C
12.
B
13.
B
14.
D
15.
B
16.
D
D
17.
19.
18.
C
21.
20. A
D
22.
23.
B
24.
25.
B
26.
27.
D
29.
33.
B
D
37.
41.
B
D
32.
B
34.
B
40.
D
42.
D
B
C
50. A
C
52.
54.
D
D
55.
56. A
57.
58. A
59.
C
B
C
61. A
B
62. A
66.
D
48.
51. A
64.
C
46.
49.
60.
C
44.
45. A
47.
C
38. A
D
43.
C
36.
C
39.
B
30.
D
35.
D
28. A
C
31.
B
63.
C
65.
C
D
D
67. A
68. A
69.
1
C
71.
C
70.
72. A
73.
76.
B
D
C
82.
79.
B
81.
B
83.
D
84. A
85.
86. A
87.
88.
89.
B
C
90.
92. A
94.
B
96.
D
B
C
B
91.
C
93.
C
95. A
97.
C
98.
100.
D
77. A
78.
80.
B
75.
C
74.
D
D
C
99.
B
D
101. A
102.
D
103.
104.
D
105.
B
106.
D
107.
B
108.
C
109.
B
D
110.
C
111. A
112.
C
113.
114.
C
115.
D
117.
D
116. A
118.
B
119.
D
120.
122.
C
C
121.
C
123.
D
B
D
125.
124. A
126.
B
127.
C
128.
B
129.
C
130.
D
2