Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (991)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.37 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1

Câu 1. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = (1; +∞).

D. D = R.

Câu 2. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

D. {3; 4}.

C. {3; 3}.

Câu 3. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 3
a 6
a 6
a 6


A.
.
B.
.
C.
.
D.
.
2
2
3
7
Câu 4. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. 2.
C. .
D. − .
2
2
[ = 60◦ , S O
Câu 5. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S BC) bằng


a 57
2a 57
a 57

A.
.
B.
.
C. a 57.
.
D.
19
19
17
1 − 2n
Câu 6. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. 1.
C. .
D. − .
3
3
3

2
3
Câu 7. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.

C. 2 nghiệm.
D. 1 nghiệm.
Câu 8. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.

C. 12.

D. 30.

Câu 9. Trong các khẳng định sau, khẳng định nào sai? √
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 10. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
Câu 11. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10
Câu 12. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.
B. 1.
C. 2.

D. +∞.

Câu 13. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (−∞; 1).

D. (0; 2).

D. f 0 (0) = 10.

Câu 14. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 68.
D. 34.
17
Trang 1/10 Mã đề 1



Câu 15. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
x
Câu 16. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
B. 1.
C.
.
D. .
A. .
2
2
2
2
x − 5x + 6
Câu 17. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 0.
D. 1.

x+2
đồng biến trên khoảng
Câu 18. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.

Câu 19. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Năm cạnh.

D. Bốn cạnh.

[ = 60◦ , S O
Câu 20. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S

a 57
a 57
2a 57
.
B. a 57.
.

D.
.
C.
A.
19
17
19
Câu 21. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
12
4

Câu 22. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
Câu 23. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
[ = 60◦ , S A ⊥ (ABCD).
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a 2
a 2
a 3
.
B.
.
C.
.
D. a3 3.

A.
6
12
4
Câu 25. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 26. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 27. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 24 m.
D. 8 m.
Câu 28. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 13 năm.
D. 12 năm.
Trang 2/10 Mã đề 1



Câu 29. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vơ nghiệm.
D. 1.
Câu 30. Tính lim

x→+∞

A. 2.

x−2
x+3
B. −3.

C. 1.

2
D. − .
3

0
Câu 31. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt

2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B. 2.
C. 3.
.
D.
3

Câu 32. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
a 38
3a 38
3a
.
B.
.
C.
.

D.
.
A.
29
29
29
29

Câu 33. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 8 mặt.

D. 6 mặt.

Câu 34. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
4
4
Câu 35. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
n2 + n + 1
n2 − 3n

A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n
5n − 3n2
5n + n2
(n + 1)2
n2
Câu 36. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.

Câu 37. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.

B. 63.
C. 62.
D. Vơ số.
1
Câu 38. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3.
2mx + 1
1
Câu 39. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. −5.
C. 1.
D. 0.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 40. Cho
x2
1
A. 0.
B. 1.

C. −3.
D. 3.
Câu 41. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

d = 120◦ .
Câu 42. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 3a.
C. 4a.
D. 2a.
2
Trang 3/10 Mã đề 1


Câu 43. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 44. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.


D. 3.

Câu 45. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 46. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.

Câu 47. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là

a3 3
a3
a3 3

.
B.
.
C.
.
A.
4
8
4

x2 + 3x + 5
Câu 48. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. 1.
C. − .
4
x+1
Câu 49. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
B. .
C. .
A. .
6

2
3
mx − 4
Câu 50. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 34.
C. 67.

D. Chỉ có (II) đúng.
⊥ (ABC) và (S BC) hợp với

a3 3
D.
.
12

D.

1
.
4

D. 1.

D. 26.


Câu 51. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể

tích khối nón đã



√ cho là
πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Câu 52. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
Câu 53. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.

C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 54. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Trang 4/10 Mã đề 1


Câu 55.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =

f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 56. Tính lim
A. +∞.

cos n + sin n
n2 + 1
B. 0.

C. −∞.
D. 1.
a
1
Câu 57. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
2

Câu 58. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.
Câu 59. Giá trị của giới hạn lim
A. 1.


B. 0.

2−n
bằng
n+1

C. 2.

D. 3 − log2 3.

D. −1.

Câu 60. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 8 3.
B. 16.
C. 8 2.
D. 7 3.
Câu 61. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
8a
2a
.

B. .
C.
.
D.
.
A.
9
9
9
9
Câu 62. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. 3.
D. Vơ số.
Câu 63. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD

a3 3
a
3
a3
A.
.
B. a3 .
C.

.
D.
.
3
9
3
Câu 64. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
Câu 65. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.
4x + 1
Câu 66. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −4.
C. −1.

D. 27.

D. 4.

Câu 67. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu

của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
7
8
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
Trang 5/10 Mã đề 1


Câu 68. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một hoặc hai.
D. Có một.
Câu 69. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 3.

D. 0, 5.
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 40a3 .
C. 20a3 .
D. 10a3 .
3
x3 − 1
Câu 71. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. −∞.
D. +∞.
Câu 72. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 73. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. .
n

n

C.

Câu 75. Hàm số nào sau đây khơng có cực trị
x−2
A. y = x3 − 3x.
B. y =
.
2x + 1

C. y = x4 − 2x + 1.

n+1
.
n

1
D. √ .
n
 π π
Câu 74. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 1.
D. 3.
1
D. y = x + .
x


Câu 76. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều đúng.

Câu 77. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
Câu 78. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 20.

D. 10.

Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt

Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).


a3 2
a3 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
2
2
4
Câu 80. Dãy số nào có giới hạn bằng 0?!
!n
n
n3 − 3n
−2
6
A. un =
.
B. un =
.
C. un =
.
D. un = n2 − 4n.

n+1
3
5
Trang 6/10 Mã đề 1


Câu 81. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 82. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.

C. 12.

D. 10.

Câu 83. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 84. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1

1
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
A. log2 a =
log2 a
loga 2
Z 1
Câu 85. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
A. .
B. 0.
2
Câu 86. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.

C.

1
.
4

D. 1.


C. {3; 4}.

D. {5; 3}.

Câu 87. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 88. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.

D. m ≥ 0.

Câu 89. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.

Câu 90.
phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. 7.
D. −7.
Câu 91. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1

1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
9
15
6

Câu 92. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Câu 93. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.

D. −1.

Câu 94. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.

D. 20, 128 triệu đồng.
Câu 95. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Câu 96.
Z Các khẳng định
Z nào sau đây là sai?
A.

k f (x)dx = k

f (x)dx, k là hằng số.

Z
B.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.
Trang 7/10 Mã đề 1


Z
C.


!0

Z

f (x)dx = f (x).

D.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

Câu 97. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.

.
D.
.
8
48
24
24
Câu 98. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 99. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 3.
C. 5.
D. 2.
Câu 100. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m = 0.

D. m , 0.

d = 60◦ . Đường chéo
Câu 101. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






2a3 6
a3 6
4a3 6
3
A.
C.
.
B. a 6.
.
D.
.
3
3
3
Câu 102. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 2.
D. 3.
2

Câu 103. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 5.
C. 2.

D. 3.


Câu 104.
√ Biểu thức nào sau đây không
√ 0 có nghĩa
−3
A.
−1.
B. (− 2) .

D. 0−1 .

C. (−1)−1 .

Câu 105. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
!
1
1
1

Câu 106. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 1.
C. 0.
D. .
2
!
!
!
x
4
1
2
2016
Câu 107. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.

C. T =
.
D. T = 2017.
2017
Câu 108. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
1 − xy
Câu 109. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.



9 11 − 19
18 11 − 29
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21

3
9
Trang 8/10 Mã đề 1


Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
4a 3
8a 3
8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
x2 − 12x + 35
Câu 111. Tính lim

x→5
25 − 5x
2
2
A. .
B. +∞.
C. −∞.
D. − .
5
5
Câu 112. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.
C. 6.
D. 4.
Câu 113. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D. 13.

Câu 114. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2

a 2
A.
.
B. 2a 2.
C.
.
D. a 2.
4
2
3
2
Câu 115. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 0.
D. 3.
Câu 116.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
f (x)g(x)dx =
f (x)dx g(x)dx.

Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 117. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − .
A. − .
e
2e
2
x −9
Câu 118. Tính lim
x→3 x − 3
A. +∞.
B. −3.
C. 6.
Câu 119. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.

B.
.
C. .
2
2

D. −

1
.
e2

D. 3.
D. 1.

Câu 120. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. [3; 4).
B. 2; .
C.
;3 .
D. (1; 2).
2
2



ab.

Câu 121. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. 13.
D. log2 13.
1
Câu 122. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 123. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 3.

C. 1.

D. 2.

Câu 124. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.

C. 30.

D. 12.

Trang 9/10 Mã đề 1


Câu 125. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−1; 1).

D. (−∞; −1).

Câu 126. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 127. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 32.

D. S = 24.

Câu 128. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.

C. |z| = 10.
D. |z| = 17.
Câu 129. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

C. y0 =

1
2 x . ln

.

D. y0 =

1
.
ln 2

x



x = 1 + 3t




Câu 130. [1232h] Trong không gian Oxyz, cho đường thẳng d : 

y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương


 trình là









x = −1 + 2t
x = −1 + 2t
x = 1 + 3t
x = 1 + 7t

















C. 
.
B. 
A. 
y = −10 + 11t .
y = −10 + 11t . D. 
y = 1 + 4t .
y=1+t

















z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.

C

4. A

5.


B
C

7.
9. A
11. A

D

6.

D

8.

D

10.

D

12. A

13.

D

14.

B


15.

D

16.

B

18.

B

17.

B

20.

19. A
21.

C

23.

D

25. A


D

22.

C

24.

C

26.

C
D

27.

B

28.

29.

B

30.

31.

B


32.

B

34.

B

33. A
35.

B

37.

36.

39.
43.

D

47.

40.

C

42. A


C
B

45.

C

38. A

C

41.

C

C
B

44.

B

46.

B

48.

49. A


50.

51.

C

52. A

53.

C

54. A

55.

B

56.

57.

B

58. A

C
B


B

59.

D

60.

B

61.

D

62.

B

63.

D

64. A

65.
67.

66.

C

D

68.
1

D
C


69.
71.

C
B

77.

C
D

72.

B

73.
75.

70.

C


74.

C

76.

C

78.

B

80.

B

82.

B

83. A

84.

B

85. A

86. A


79.

C
B
C

81.

87.

B

88. A
D

89.

90. A

92. A

93.

B
B

94.

D


95.

96.

D

97.

D

99.

D

98. A
100.

D

101.

102. A

103. A

104.
106.

D

B

105.

B

107.

B

108.

C

109.

110.

C

111. A

112.

C

113. A

114.


C

115. A

116.

B

B

C

117.

C

118.

C

119. A

120.

C

121.

D


122.

C

123.

D

124.

B

126. A
128.
130.

125.

C

127.

C

129.

C
D

2


B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×