TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
2x + 1
Câu 2. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. 2.
D. −1.
2
Câu 3. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
.
C. 26.
A. 2 13.
B.
D. 2.
13
Câu 4. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
Câu 5. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = −21.
D. P = 21.
x2 − 12x + 35
Câu 6. Tính lim
x→5
25 − 5x
2
2
A. − .
B. +∞.
C. .
D. −∞.
5
5
√
Câu 7. Xác định phần ảo của số phức
z
=
(
2 + 3i)2
√
√
A. −7.
B. −6 2.
C. 7.
D. 6 2.
[ = 60◦ , S O
Câu 8. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√
a 57
a 57
2a 57
.
B. a 57.
C.
.
D.
.
A.
19
17
19
Câu 9. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 10. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
Câu 11. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 1 nghiệm.
B. Vô nghiệm.
2n − 3
Câu 12. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.
C. Khối bát diện đều. D. Khối tứ diện đều.
√
4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 2 nghiệm.
D. 3 nghiệm.
C. 0.
D. 1.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
√
√
2 11 − 3
9 11 + 19
C. Pmin =
.
D. Pmin =
.
3
9
Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x +
√ y.
√
18 11 − 29
9 11 − 19
A. Pmin =
. B. Pmin =
.
21
9
Câu 14. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = S h.
C. V = 3S h.
2
1
D. V = S h.
3
Trang 1/10 Mã đề 1
Câu 15. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.
C. 10.
D. 6.
Câu 16. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 17. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 18. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
d = 30◦ , biết S BC là tam giác đều
Câu 19. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
26
9
16
Câu 20. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
.
B.
=
=
.
A. = =
1 1
1
2
3
4
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
2
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 21. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
x+2
bằng?
Câu 22. Tính lim
x→2
x
A. 1.
B. 0.
C. 3.
D. 2.
Câu 23. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln x.
ln 2
C. y0 = 2 x . ln 2.
Câu 24. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 2.
C. 1.
D. y0 =
1
3|x−1|
1
2 x . ln
x
.
= 3m − 2 có nghiệm duy
D. 4.
Câu 25. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 7%.
D. 0, 5%.
Câu 26. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
C. 4.
D. 6.
Câu 27. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
[ = 60◦ , S A ⊥ (ABCD).
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√
√ S C là a. Thể tích khối chóp S .ABCD là
3
3
√
a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
12
6
4
Trang 2/10 Mã đề 1
Câu 29. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
Câu 30. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 1.
2
x − 3x + 3
đạt cực đại tại
Câu 31. Hàm số y =
x−2
A. x = 1.
B. x = 3.
Câu 32. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 2.
C. 0.
D. 2.
C. x = 0.
D. x = 2.
C. 5.
D. 4.
Câu 33. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 7
11a
a2 5
a 2
.
B.
.
C.
.
D.
.
A.
4
8
32
16
Câu 34. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.
C. D = R \ {1}.
D. D = R.
Câu 35. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 36.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒
A.
Z
C.
f (x)dx = F(x) +C ⇒
f (t)dt = F(t) + C. B.
Z
f (u)dx = F(u) +C. D.
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Câu 37. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
B. 68.
C. 5.
D.
A. 34.
17
Câu 38. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
1
n+1
A. .
D.
B.
.
C. √ .
.
n
n
n
n
Câu 39. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.
D. m > 1.
Câu 40. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.
C. y0 = x + ln x.
D. y0 = 1 − ln x.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 41. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. 2.
C. .
D. −1.
2
Câu 42. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 43. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
C. 2a 2.
D.
.
4
2
Trang 3/10 Mã đề 1
Z
Câu 44. Cho
1
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
A. .
B. .
2
4
Câu 45. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 1.
D. 0.
C. 12.
D. 10.
Câu 46. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
9
3
Câu 47. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.
C. Cả hai đều sai.
3
2
Câu 48. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. 3 + 4 2.
B. −3 + 4 2.
C. 3 − 4 2.
D. Chỉ có (I) đúng.
√
D. −3 − 4 2.
Câu 49. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
Câu 50. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log 14 x.
A. y = log √2 x.
√
C. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
Câu 51. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 52. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
2
x
Câu 53. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = e, m = .
D. M = , m = 0.
e
e
Câu 54. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
Câu 55. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
3
3
3
a
a
3
a
3
A. a3 .
B.
.
C.
.
D.
.
3
2
6
Câu 56. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. −7, 2.
D. 72.
Trang 4/10 Mã đề 1
Câu 57. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
24
36
Câu 58. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!4x
!2−x
2
3
Câu 59. Tập các số x thỏa mãn
≤
là
3
2
#
"
!
#
"
!
2
2
2
2
; +∞ .
A. −∞; .
B.
C. −∞; .
D. − ; +∞ .
3
5
5
3
Câu 60. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
B. 1.
C. 2.
A. .
2
D.
ln 2
.
2
Câu 61. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
4a 3
8a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
x−2
Câu 62. Tính lim
x→+∞ x + 3
2
A. 2.
B. 1.
C. − .
D. −3.
3
Câu 63. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .
√
C. (− 2)0 .
D.
√
−1.
−3
Câu 64. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
24
8
48
24
!
!
!
1
2
2016
4x
Câu 65. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T = 2017.
D. T =
.
2017
Câu 66. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 6510 m.
D. 2400 m.
Câu 67. Dãy số nào có giới hạn bằng 0?
n3 − 3n
.
B. un = n2 − 4n.
A. un =
n+1
!n
−2
C. un =
.
3
!n
6
D. un =
.
5
Trang 5/10 Mã đề 1
Câu 68. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.
1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).
Câu 69. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. a.
D. .
2
3
2
Câu 70. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
23
5
B.
.
C.
.
D. −
.
A. − .
16
100
25
100
√
Câu 71. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
.
D. V = a3 2.
A. V = 2a3 .
B. 2a3 2.
C.
3
Câu 72. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
2n + 1
Câu 73. Tính giới hạn lim
3n + 2
1
2
B. .
C. 0.
A. .
3
2
x+1
Câu 74. Tính lim
bằng
x→+∞ 4x + 3
1
B. 3.
C. 1.
A. .
4
Câu 75. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = 0.
D.
3
.
2
D.
1
.
3
D. x = −8.
Câu 76. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
1
Câu 77. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. 3.
C. −3.
D. − .
A. .
3
3
Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 79. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.
D. 8 mặt.
Câu 80. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
7n2 − 2n3 + 1
Câu 81. Tính lim 3
3n + 2n2 + 1
2
A. - .
B. 0.
3
C. 1.
D.
7
.
3
Trang 6/10 Mã đề 1
1
Câu 82. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D. (1; +∞).
Câu 83. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
Câu 84. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
B.
f (x)dx = F(x) + C.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
1 − n2
Câu 85. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. 0.
C. .
D. .
A. − .
2
3
2
Câu 86. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x)g(x)] = ab.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
Câu 87. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
√
Câu 88. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 64.
D. 63.
Câu 89. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 90. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.
D. {5; 3}.
C. {3; 4}.
Câu 91. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. − .
B. −2.
C. 2.
2
D.
1
.
2
tan x + m
Câu 92. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 93. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Trang 7/10 Mã đề 1
Câu 94. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
D. Khối lập phương.
√
Câu 95. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
a 38
3a
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 96. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 12.
D. 18.
2
Câu 97. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
C. Khối tứ diện đều.
x→a
x→b
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
3
Câu 98. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 99. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. Cả ba mệnh đề.
C. (II) và (III).
D. (I) và (III).
Câu 100. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. 1.
C. .
D. .
2
2
√
√
Câu 101. Phần thực và√phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 102. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
Câu 103.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
4
12
2
Câu 104. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
a b2 + c2
abc b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 8/10 Mã đề 1
Câu 105. [1] Biết log6
A. 36.
√
a = 2 thì log6 a bằng
B. 6.
C. 108.
D. 4.
Câu 106. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; 8).
D. A(−4; −8)(.
Câu 107. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n
2
Câu 108. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.
D. 7.
Câu 109. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 4.
C. 8.
D. 6.
Câu 110. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 111. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
5
8
7
; 0; 0 .
; 0; 0 .
; 0; 0 .
A.
B.
C.
D. (2; 0; 0).
3
3
3
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 112. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
Câu 113. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Ba mặt.
D. Hai mặt.
Câu 114. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
D. 30.
C. 20.
Câu 115. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
A.
.
B.
.
C. a 3.
D.
.
2
2
3
Câu 116. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Toán là
C 20 .(3)30
C 20 .(3)20
C 40 .(3)10
C 10 .(3)40
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
2
x − 5x + 6
Câu 117. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.
C. 1.
D. −1.
Câu 118. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. β = a β .
D. aα+β = aα .aβ .
a
Câu 119. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
C.
.
D. a 3.
3
2
Trang 9/10 Mã đề 1
Câu 120. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (1; 2).
D. (−∞; +∞).
Câu 121. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
Câu 122. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
6
12
24
Câu 123.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
mệnh đề nào sai?
Z
Z mệnh đề sau, Z
f (x)g(x)dx =
A.
Z
C.
f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
k f (x)dx = f
B.
Z
D.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 124. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. 4.
D. −2.
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3
√
a 2
a 3
a 3
A.
.
B.
.
C. a3 3.
.
D.
4
2
2
1
Câu 126. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 127. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
!2x−1
!2−x
3
3
≤
là
Câu 128. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. [1; +∞).
C. [3; +∞).
D. (+∞; −∞).
Câu 129. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 130. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
3.
B
4.
5.
C
D
6.
D
7.
C
C
D
8.
9.
C
10.
11.
C
12.
13.
C
14.
D
16.
D
D
15.
17.
B
18.
19. A
B
C
B
20. A
21.
C
22.
23.
C
24.
25.
C
26. A
D
C
27. A
28.
29. A
30.
31. A
32.
D
34.
D
33.
B
35.
C
40. A
41. A
42.
D
45.
53.
48.
D
B
50. A
C
B
55.
C
46. A
47. A
51.
D
44. A
C
49.
C
38.
39. A
43.
C
36.
D
37.
D
C
52.
C
54.
C
56.
C
58.
57. A
59.
D
60.
61.
D
62.
D
C
B
63.
B
64. A
65.
B
66.
C
68.
C
67.
C
1
71.
70.
C
69.
B
72.
73. A
D
B
74. A
75.
D
76.
C
77.
D
78.
C
79. A
80. A
81. A
82. A
83.
84.
C
85. A
87.
B
C
89.
D
86.
B
88.
B
90. A
92.
B
93. A
94.
B
95. A
96.
91.
97.
B
B
98.
B
103.
D
102. A
C
105.
107.
B
100.
99. A
101.
D
D
104.
B
106.
B
108.
B
109. A
D
110. A
111.
B
112.
113.
B
114.
C
D
115.
D
116.
C
117.
D
118.
C
119.
D
120.
C
121. A
122.
123. A
124.
D
126.
D
125.
127.
D
B
128.
129. A
130.
2
B
B
C