TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.
Câu 2. [1-c] Giá trị của biểu thức
A. 2.
B. 4.
log7 16
log7 15 − log7
15
30
D. 1.
bằng
C. −2.
D. −4.
1 − xy
Câu 3. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
Câu 4. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim qn = 0 (|q| > 1).
n
1
D. lim un = c (un = c là hằng số).
C. lim = 0.
n
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 6
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
48
16
48
24
Câu 6. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 7. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
40
10
20
20
C50
.(3)10
C50
.(3)40
C50
.(3)30
C50
.(3)20
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 8. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 5.
C.
.
D. 7.
2
2
x+2
Câu 9. Tính lim
bằng?
x→2
x
A. 1.
B. 2.
C. 0.
D. 3.
Câu 10. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
2a3
2a3 3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
x−1
Câu 11. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
√
A. 2 2.
B. 6.
C. 2.
D. 2 3.
Trang 1/10 Mã đề 1
2n + 1
Câu 12. Tìm giới hạn lim
n+1
A. 3.
B. 1.
C. 2.
D. 0.
Câu 13. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
1
Câu 14. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
a
1
Câu 15. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 2.
D. 7.
2
3
7n − 2n + 1
Câu 16. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 1.
C. - .
D. 0.
3
3
Câu 17. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 18. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (II).
C. (I) và (III).
D. (II) và (III).
Câu 19. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B. a 3.
C. 2a 6.
D.
.
A. a 6.
2
Câu 20. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 21. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.
2−n
Câu 22. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 6.
D. 4.
C. 1.
D. 0.
√
Câu 23. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
3
√
a 3
a
3
a3
A.
.
B. a3 3.
C.
.
D.
.
12
3
4
1
Câu 24. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
Trang 2/10 Mã đề 1
Câu 25. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
6
2
Câu 26. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
24
48
8
Câu 27. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
2
2
sin x
Câu 28. [3-c]
+ 2cos x lần
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
Câu 29. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 30. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 31. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
A. 2; .
B. [3; 4).
C.
D. (1; 2).
2
2
!x
1
1−x
Câu 32. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. − log2 3.
B. 1 − log2 3.
C. − log3 2.
D. log2 3.
√
ab.
x+3
Câu 33. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 1.
D. 3.
Câu 34. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 35. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
3
a3
3
a3 3
a
A.
.
B.
.
C. a3 .
D.
.
3
3
9
n−1
Câu 36. Tính lim 2
n +2
A. 0.
B. 1.
C. 3.
D. 2.
Câu 37. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.
C. 4.
D. 8.
Trang 3/10 Mã đề 1
Câu 38. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.
C. 8.
D. 12.
4x
1
2
2016
Câu 39. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T =
.
D. T = 2017.
2017
!
!
!
Câu 40. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 0.
D. 1.
Câu 41. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 6 mặt.
Câu 42. Tính lim
A. 1.
5
n+3
B. 2.
2n − 3
bằng
Câu 43. Tính lim 2
2n + 3n + 1
A. 1.
B. 0.
D. 4 mặt.
C. 3.
D. 0.
C. +∞.
D. −∞.
Câu 44. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Câu 45.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
A.
x=t
Câu 46. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 47. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 48. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Trang 4/10 Mã đề 1
Câu 49. Cho I =
Z
3
x
√
dx =
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
2
x −9
Câu 50. Tính lim
x→3 x − 3
A. 3.
B. +∞.
a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = −2.
D. P = 28.
C. 6.
D. −3.
Câu 51. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
√
√
Câu 52. Tìm
√ giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
A. 2 + 3.
B. 3 2.
C. 2 3.
D. 3.
√
Câu 53. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
B. V = 2a3 .
C.
A. 2a3 2.
.
D. V = a3 2.
3
d = 30◦ , biết S BC là tam giác đều
Câu 54. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
9
26
13
Câu 55. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.
C. 2.
D. 5.
t
9
Câu 56. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. 1.
D. Vô số.
Câu 57. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 0.
C. +∞.
D. 2.
8
Câu 58. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 82.
D. 64.
Câu 59. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
C. 5.
D. 9.
Câu 60. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.
Câu 61. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.
C. Cả hai đều sai.
D. Chỉ có (II) đúng.
1
2mx + 1
Câu 62. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. −2.
C. 0.
D. 1.
Trang 5/10 Mã đề 1
Câu 63. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 6.
D. 4.
Câu 64. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
Câu 65. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 6.
B. 2.
C. −1.
3
Z
6
3x + 1
1
. Tính
f (x)dx.
0
D. 4.
Câu 66. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
Câu 67.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 5.
B. 2.
C. 1.
D. 3.
Câu 68. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 3.
D. V = 4.
Câu 69. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
C. −2.
D. − .
A. 2.
B. .
2
2
p
ln x
1
Câu 70. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
B. .
C. .
D. .
A. .
9
9
3
3
Câu 71. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 72.
có nghĩa
√ Biểu thức nào sau đây khơng
−3
−1
A.
−1.
B. 0 .
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
C. (−1)−1 .
√
D. (− 2)0 .
Câu 73. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
Câu 74. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
A.
.
B.
.
n
n
1
C. √ .
n
D.
Câu 75. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
C. 30.
D. 12.
1
.
n
Câu 76. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
4
8
2
Trang 6/10 Mã đề 1
Câu 77. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim
vn !
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 78. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 79. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D. V = S h.
2
3
x
x
Câu 80. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 81. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Câu 82. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
Câu 83. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. 6.
C. −5.
2
D. −6.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 84. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 2.
C. 4.
D. 5.
Câu 85. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
2 . ln x
Câu 86. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. y0 =
1
.
ln 2
C. Khối tứ diện đều.
D. y0 = 2 x . ln x.
D. Khối 12 mặt đều.
Câu 87. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
2
3
6
tan x + m
Câu 88. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Trang 7/10 Mã đề 1
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
8a 3
a 3
4a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 90. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
24
12
24
Câu 91. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. .
C. 6.
D. .
2
2
Câu 92. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −2.
D. x = −5.
Câu 93. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 7.
C. 3.
D. 2.
1
Câu 94. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (1; 3).
D. (−∞; 3).
Câu 95. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 220 triệu.
C. 212 triệu.
D. 210 triệu.
un
Câu 96. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 97. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −3.
D. m = −1.
! x3 −3mx2 +m
1
Câu 98. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m ∈ R.
D. m , 0.
π
Câu 99. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π3
A.
e .
e .
B.
C. e .
D. 1.
2
2
2
log(mx)
Câu 100. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 101. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
√
3
3
3
3
A. .
B.
.
C.
.
D.
.
4
2
4
12
Câu 102. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 8/10 Mã đề 1
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).
f (x)dx = F(x) + C.
x
Câu 103.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
.
B. 1.
C. .
D. .
A.
2
2
2
Câu 104. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
d = 300 .
Câu 105. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
√
√
3a3 3
a3 3
3
3
A. V =
.
B. V = 6a .
C. V = 3a 3.
D. V =
.
2
2
x+1
bằng
Câu 106. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
2
3
6
Câu 107. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
3
√
a 5
a 6
a
15
A.
.
B.
.
C. a3 6.
D.
.
3
3
3
Câu 108. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim f (x) = f (a).
x→a
x→a
x→a
Câu 109. Hàm số y =
A. x = 3.
x − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
2
C. x = 2.
D. x = 0.
Câu 110. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
0
0
0
0
x2 − 12x + 35
Câu 111. Tính lim
x→5
25 − 5x
2
2
A. .
B. +∞.
C. −∞.
D. − .
5
5
x x
0
Câu 112. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
mx − 4
Câu 113. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 26.
D. 34.
Câu 114. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
24
12
6
Trang 9/10 Mã đề 1
Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
π
Câu 116. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
C. T = 2 3.
D. T = 2.
A. T = 4.
B. T = 3 3 + 1.
Câu 117. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 118. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 119. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
9
23
A. −
.
B. − .
C.
.
D.
.
100
16
100
25
Câu 120. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
A. |z| = 10.
x2
Câu 121. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
A. M = , m = 0.
e
e
!
x+1
Câu 122. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
.
B.
.
C.
.
D. 2017.
A.
2017
2018
2018
Câu 123. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Tứ diện đều.
D. Bát diện đều.
Câu 124. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 27.
D. 3.
Câu 125. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
√
Câu 126. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
6
18
Câu 127. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 3.
C. 2.
D. 1.
Trang 10/10 Mã đề 1
Câu 128. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
.
D. 2 13.
A. 2.
B. 26.
C.
13
1
Câu 129. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = R.
D. D = (−∞; 1).
Câu 130. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {5}.
D. {3}.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
D
4.
5.
B
6. A
C
7. A
9.
D
8. A
B
10.
C
C
11.
D
12.
13.
D
14.
15.
D
16.
C
17.
18.
B
C
B
19. A
21.
C
22. A
23.
C
24. A
25.
26.
B
27.
28.
D
29. A
30.
D
31.
C
34.
B
40.
D
37.
B
39.
B
43.
44. A
45.
46. A
47. A
B
50.
D
41.
C
42.
52.
C
35. A
36. A
48.
B
33.
32. A
38.
D
C
B
C
49. A
51.
C
B
C
53. A
D
54.
55.
B
56. A
57.
B
58. A
59. A
60.
D
62.
64.
61.
C
63.
B
65.
B
66. A
68.
D
67.
D
69.
1
D
B
C
70. A
71. A
72.
B
73. A
74.
B
75. A
76. A
77.
C
78.
D
79.
D
80.
D
82.
D
83.
84.
C
D
87.
88.
89.
B
90.
91.
B
92.
D
93.
B
98.
99.
B
100.
C
B
C
B
D
102. A
B
104.
105. A
D
D
B
108.
109.
B
110.
111. A
112.
D
B
106.
107.
113.
D
96.
97.
101.
B
94. A
C
95.
C
B
114.
115.
B
116. A
117.
B
118.
119. A
121.
D
86.
85. A
103.
C
C
B
120. A
B
122.
123. A
B
124.
D
D
125.
C
126.
127.
C
128.
C
130.
C
129.
B
2