Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (230)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (147.17 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y z−1
A.
=
=
.
B. = =


.
2
2
2
1 1
1
x−2 y−2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
3
4
2
3
−1
Câu 2. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
5
8

A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 3. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 4. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 5. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .

C. 1.
D. 0.
Câu 6. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (III).

C. (I) và (II).

D. (II) và (III).

Câu 7. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
a
2a
.
B.
.
C. .
D.
.
A.

9
9
9
9
1
Câu 8. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 1.
B. 3.
C. 2.
D. 4.
Câu 9. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 10. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Trang 1/10 Mã đề 1


Câu 11. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.

d = 60◦ . Đường chéo
Câu 12. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 13. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 3.
C. m = ±1.

D. m = ± 2.
!
5 − 12x
Câu 14. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 2.
C. 1.
D. Vơ nghiệm.
Câu 15. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. Không tồn tại.

D. −7.

Câu 16. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
!
x+1
Câu 17. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035

A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
!2x−1
!2−x
3
3
Câu 18. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).
D. (−∞; 1].
log2 240 log2 15
Câu 19. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 3.

C. 4.
D. 1.
Câu 20. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 21. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.

D. {3; 3}.

Câu 22. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 23. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng




a 2
a 2
A. 2a 2.
B.
.
C.
.
D. a 2.
4
2
Trang 2/10 Mã đề 1


Câu 24. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 25. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 26. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 27. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.

3a
Câu 28. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
a
2a
A.
.
B. .
C. .
D.
.
3
3
4
3

Câu 29. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3

πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Câu 30. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A.
; +∞ .
B. −∞; − .
C. − ; +∞ .
D. −∞; .
2
2
2
2
Câu 31. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O

đến (S AB)
√ bằng



a 6
.
B. a 6.
C. 2a 6.
D. a 3.
A.
2
Z 1
6
2
3
Câu 32. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 6.

C. 4.

D. 2.

Câu 33.

√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
B. 27.
C. 8.
D. 9.
A. 3 3.
Câu 34. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > −1.

D. m > 0.

Câu 35. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.

D. Hình lăng trụ.

Câu 36. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.

D. 2.

C. 5.

Câu 37.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.

A. 2.
B. 1.
C. 10.
D. 2.
Câu 38. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 39. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.
C. 8.
D. 10.
Trang 3/10 Mã đề 1


Câu 40. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
.
B. 2.
C. 1.

A.
2

D.

1
.
2

Câu 41. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −12.
D. −9.
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
4a 3
2a3 3
a3
A.
.
B.
.
C.
.

D.
.
6
3
3
3
Câu 43. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 44. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
Câu 45. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
2

Câu 46. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 8.


D. 5.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 47. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
Câu 48. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

1 3
x − 2x2 + 3x − 1.
3
C. (−∞; 1) và (3; +∞). D. (1; +∞).

Câu 49. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).

B. (−∞; 3).


Câu 50. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −3.
C. −6.
D. 3.
cos n + sin n
Câu 51. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 1.
D. 0.

Câu 52. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
x2 − 5x + 6
Câu 53. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.

C. 1.

D. 0.

1

. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.

Câu 54. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Trang 4/10 Mã đề 1


Câu 55.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z

C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
x+2
Câu 56. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 57. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 5.
D. 0, 4.
Câu 58. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
!4x
!2−x
2
3

Câu 59. Tập các số x thỏa mãn


#
" 3 ! 2
#
"
!
2
2
2
2
A. −∞; .
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
3
5
5
3
Câu 60. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. − .
D.
A. − 2 .
B. − .
e

2e
e
2n2 − 1
Câu 61. Tính lim 6
3n + n4
2
D.
A. 1.
B. 0.
C. .
3
Câu 62. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 10.
D.
ln 10
Câu 63. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 4.
D.
Câu 64. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.

C. 10.


Câu 65. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (4; 6, 5].

−e.

2.

f 0 (0) = 1.
ln 10.

D. 12.
D. (−∞; 6, 5).

Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
a3 3
2a3 3
.
B.
.
C.
.
D. a3 3.
A.

6
3
3
Câu 67. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

2a3
4a3 3
4a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 68. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.

D. 18 tháng.
Trang 5/10 Mã đề 1


12 + 22 + · · · + n2
Câu 69. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. 0.
D. .
3
3
[
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 60◦ , S A ⊥ (ABCD).
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là

a3 2
a3 2
a3 3
3
D.
A.
.
B.
.

C. a 3.
.
4
6
12
Câu 71. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 2.
x+2
bằng?
Câu 72. Tính lim
x→2
x
A. 0.
B. 2.

C. 1.

D. 3.

C. 3.

D. 1.

Câu 73. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là

vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng

a 57
2a 57
A. a 57.
.
C.
.
D.
B.
19
19
x−3
Câu 74. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. 1.
C. +∞.
D.
log7 16
Câu 75. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.
C. 4.
D.

2

[ = 60◦ , S O
a. Góc BAD

a 57
.
17

−∞.

−2.

cos2

sin x
Câu 76.
+ 2 x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm√số f (x) = 2
A. 2 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.

Câu 77. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.


D. Khối 12 mặt đều.

Câu 78. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

2a3 6
a3 3
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
9
4
12
2
1 − 2n
Câu 79. [1] Tính lim
bằng?
3n + 1
1
2
2

A. 1.
B. .
C. .
D. − .
3
3
3
log 2x
Câu 80. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
Câu 81. Cho số phức z thỏa mãn |z +

√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Trang 6/10 Mã đề 1


Câu 82. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.
4x + 1
bằng?
Câu 83. [1] Tính lim
x→−∞ x + 1
A. 4.
B. 2.
5
Câu 84. Tính lim
n+3
A. 3.
B. 0.

C. 12.

D. 10.

C. −4.


D. −1.

C. 1.

D. 2.

Câu 85. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 86. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 4.

D. 24.

0

Câu 87. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Khơng có.
D. Có hai.
2n − 3
bằng
Câu 88. Tính lim 2

2n + 3n + 1
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 89. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m ≤ .
D. m < .
A. m ≥ .
4
4
4
4
3
2
Câu 90. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 91. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.


D. {4; 3}.

log 2x
Câu 92. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
x
x ln 10
2x ln 10




D. y0 =

1 − 4 ln 2x
.
2x3 ln 10


Câu 93. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
4
2
4
3
Câu 94. Cho z là√nghiệm của phương trình√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
Câu 95. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
2

2


(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (III) sai.

2−n
Câu 96. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

C. −1.

D. 0.
Trang 7/10 Mã đề 1


Câu 97. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.

C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 98. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 99. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 100. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
[ = 60◦ , S O
Câu 101. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.

√ Khoảng cách từ A đến (S√BC) bằng

2a 57
a 57
a 57
.
C.
.
D.
.

A. a 57.
B.
19
19
17
Câu 102. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.
D. m > 0.
Z 2
ln(x + 1)
Câu 103. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. −3.
C. 1.
D. 3.
Câu 104. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m > − .
D. m ≥ 0.
A. m ≤ 0.
B. − < m < 0.
4
4

Câu 105. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x3 − 3x.
2x + 1

C. y = x4 − 2x + 1.
!
1
1
1
Câu 106. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
2
2

1
D. y = x + .
x

D. 2.


Câu 107. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 1.

D. 2.

Câu 108. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

A. 5.
B. 5.
C. 25.

D.

Câu 109. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.

D. 1.



Câu 110. Tính lim
x→5

2
A. − .
5


x2 − 12x + 35
25 − 5x
2
B. .
5

1
.
5

C. −∞.

D. +∞.

C. +∞.

D. 0.

Câu 111. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. 2.

Trang 8/10 Mã đề 1


log23


q
x + log23 x + 1 + 4m −

Câu 112. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
 π π
3
Câu 113. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. 7.
D. −1.
Câu 114. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

D. {3; 3}.

Câu 115. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).

B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 116. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.
2

Câu 117. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 3 − log2 3.

D. 1 − log2 3.

Câu 118. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (0; 2).

D. (−∞; 0) và (2; +∞).

Câu 119. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 6.


D. 1.

Câu 120. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.

D. 9 mặt.

Câu 121. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 122. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. 1.
D. −2 + 2 ln 2.
d = 30◦ , biết S BC là tam giác đều
Câu 123. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39

A.
.
B.
.
C.
.
D.
.
26
9
16
13
Câu 124. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
A. un =
.
B. un =
.
2
5n − 3n
5n + n2
Câu 125. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.

C. un =

C. 6.


n2 − 3n
.
n2

D. un =

n2 + n + 1
.
(n + 1)2

D. 10.

Câu 126. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Trang 9/10 Mã đề 1


Câu 127. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
Câu 128. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 − 2; m = 1.

D. M = e2 − 2; m = e−2 + 2.
Câu 129. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3
a3 3
a 3
3
.
B. a .
C.
.
D.
.
A.
6
3
2
Câu 130. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B
C

3.

D

5.

2.

D

4.

D

7. A

8. A
10.

9. A

D

11.

12.

13.

C

14.

15.

C

16.

17.

C

18.
20.

19. A
21.

B


23.

C
D

B
C
B
C
B

24.

C

26.

C

28.

B

29.

D

22. A

25.

27.

C

6.

30.

C

32.

C

33. A

34.

C

35. A

36. A

31.

37.

C


D

B

B

38. A

39.

C

40.

B

41.

C

42.

B

43.
45.

D

44. A

46. A

B

47.

C

48.

49.

C

50.

51.
53.

D

D
B

52. A
54. A

B

55. A


56.

57. A

58. A

59.

D

60.

61.

B

62. A

63.

B

64. A

65.

C

66.


67.

C

68. A
1

C
B

B


69.

D

70. A

71.

D

72.

C

73.
75.


B

74. A

B

76. A

77. A

78.

C

79.

D

80.

81.

D

82.

B

84.


B
B

83. A
85.

D

86.

87.

D

88. A

89.

90.

C

91.

D

92.

D


95.

B
D
C

96.

97. A

98.

99.

C

100.

101.

C

102. A

B
D

104.


B

C
D

106.

105. A
107.

D

108.

109.

D

110.

111.

D

112. A

113.

B


114.

115.

B

116. A

117.

B

118.

119.

C

121.

122.

B

123.

124.

B


125.

126.

B

127. A

128.
130.

C

94.

93. A

103.

D

129.

C
B

2

C
B

C
D
C
D
C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×