Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (562)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.1 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 3.

C. +∞.

Câu 2. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.

D. 1.
D. Vơ nghiệm.

Câu 3. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

C. 8.
D. 27.
A. 9.
B. 3 3.


Câu 4. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3
a3 5
A.
.
B.
.
C.
.
D.
.
5
25
3
25
Câu 5. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.
D. 2.
Câu 6. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = x
.

A. y0 = 2 x . ln x.
B. y0 =
ln 2
2 . ln x
Câu 7. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 7, 2.

D. 72.

Câu 8. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (2; 2).

D. (−1; −7).

D. y0 = 2 x . ln 2.

Câu 9. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
c a2 + b2
a b2 + c2

abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x
Câu 10. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
.
C. .
D. .
A. 1.
B.
2
2
2
Câu 11. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là

A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.

Câu 12. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (0; 2).
C. (−∞; 1).

D. (2; +∞).

Câu 13. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
2x + 1
Câu 14. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. .
D. −1.
2
Trang 1/10 Mã đề 1







Câu 15. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
4
4
Câu 16. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Câu 17. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

2

2

C. Khối tứ diện đều.


Câu 18. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m > −1.
4

D. Khối lập phương.

2

D. m ≥ 0.

Câu 19. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Khơng có.
D. Có hai.
Câu 20. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.

C. 3.

D. 4.
2

Câu 21. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 72cm3 .

B. 64cm3 .
C. 27cm3 .
D. 46cm3 .
Câu 22. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 5.
C. 7.
D. .
A.
2
2
Câu 23.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.

0dx = C, C là hằng số.

Câu 24. Khối đa diện đều loại {4; 3} có số mặt

A. 6.
B. 8.

D.
C. 10.

dx = x + C, C là hằng số.
D. 12.

Câu 25. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = S h.
D. V = 3S h.
A. V = S h.
3
2
Câu 26.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 27. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị

của a + 2b bằng
7
5
A. .
B. .
C. 9.
D. 6.
2
2
Câu 28. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
23
9
A. − .
B.
.
C. −
.
D.
.
16
100
100
25
Trang 2/10 Mã đề 1


Câu 29. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =

log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 30. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
.
C.
.
D. a 3.
B.
A. a 2.
2
3
Câu 31.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0

f (x)dx = f (x).

f (u)dx = F(u) +C. B.

Z
Z

D.

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

1

Câu 32. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).

D. D = R \ {1}.

Câu 33. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).

C. (−∞; −3].
D. [−3; 1].

x2 + 3x + 5
Câu 34. Tính giới hạn lim
x→−∞
4x − 1
1
1
C. 1.
D. .
A. 0.
B. − .
4
4
Câu 35. Tính lim
A. 2.

2n2 − 1
3n6 + n4
B. 0.

C. 1.

D.

2
.
3


Câu 36. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 24.
D. 15, 36.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. 1.

Câu 37. [1-c] Giá trị biểu thức
A. −8.

D. 3.

Câu 38. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
A.
.
B. .
C. a.
D. .
2

3
2
Câu 39. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 40. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
4
2
8
Câu 41. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

C. 3.

D. 5.
Trang 3/10 Mã đề 1


Câu 42. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và

AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. 2a 2.
.
C. a 2.
D.
A.
2
4
x+2
Câu 43. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 44. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3


!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3!
1
D. Hàm số đồng biến trên khoảng ; 1 .
3
2

2

sin x
Câu 45. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần
√ =2
√ lượt là
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.

Câu 46. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 7 3.

D. 16.
A. 8 3.
Câu 47. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
Câu 48. Tính lim

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

2n − 3
bằng
+ 3n + 1
B. 0.

2n2

C. −∞.
D. +∞.
1
Câu 49. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
A. 1.

Câu 50. Khối đa diện đều loại {3; 4} có số mặt
A. 12.

B. 10.

C. 8.

D. 6.

Câu 51. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 68.
A.
C. 5.
D. 34.
17
Câu 52. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3
a3 3
3
A. a .
B.
.
C.

.
D.
.
6
3
2
1
Câu 53. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
log(mx)
Câu 54. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 55. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Trang 4/10 Mã đề 1



Câu 56. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
9
3
Câu 57. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.

.
B.
.
C.
.
D.
.
4
6
12
12
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 58. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
2
C.
A.
.
B. 2a 2.
.
D.
.
12

24
24
Câu 59. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
n+1
1
B.
.
C. .
D.
.
A. √ .
n
n
n
n
Câu 60. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.

Câu 61. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3

a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
36
6
6
18
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 10a3 .
D. 40a3 .
A. 20a3 .
B.
3
Câu 63. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.

C. m = ± 3.
D. m = ±3.
Câu 64. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 65. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+3
c+1
c+2
c+2
1 − xy
Câu 66. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.




2 11 − 3
18 11 − 29
9 11 + 19
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
21
9
9
Câu 67. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
Trang 5/10 Mã đề 1


100.(1, 01)3
triệu.
3
120.(1, 12)3
C. m =
triệu.

(1, 12)3 − 1
A. m =

(1, 01)3
triệu.
(1, 01)3 − 1
100.1, 03
D. m =
triệu.
3
B. m =

Câu 68. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
x
9
Câu 69. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. .
D. 1.
2
Câu 70. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
24
6
Câu 71. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
D. 5.
A. 2.
B. 1.
C. 3.
!2x−1
!2−x
3
3
Câu 72. Tập các số x thỏa mãn


5
5

A. (+∞; −∞).
B. (−∞; 1].
C. [1; +∞).
D. [3; +∞).
Câu 73. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. 13.
D. log2 2020.
!
3n + 2
2
Câu 74. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.
C. 5.
D. 4.
Câu 75. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
Câu 76. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. 9.


D. Không tồn tại.

Câu 77. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. (II) và (III).

log 2x
Câu 78. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
2x ln 10

2x ln 10
x3

D. Cả ba mệnh đề.

D. y0 =

1 − 2 ln 2x
.
x3 ln 10
Trang 6/10 Mã đề 1


d = 60◦ . Đường chéo
Câu 79. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
3
.
B.
.
C. a 6.
D.

.
A.
3
3
3
Câu 80. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.
1 1
1

2
2
2
x y−2 z−3
x−2 y−2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
3
4
Câu 81. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 82. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 5.

D. 3.
q

Câu 83. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 84. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (−∞; 6, 5).

Câu 85. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√tích là
√mặt phẳng (AIC) có diện
2
2
2
2
a 2
a 7
a 5
11a
.

B.
.
C.
.
D.
.
A.
32
4
8
16
Câu 86. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 22.
D. 21.
Câu 87. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.

C. 30.

D. 20.

Câu 88. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên

A. Cả hai đều sai.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều đúng.

Câu 89. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Trang 7/10 Mã đề 1


Câu 90. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = ln 10.
D. f 0 (0) = 10.
A. f 0 (0) = 1.
B. f 0 (0) =
ln 10
Câu 91. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 92. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình

phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 4.
D. 0, 5.
!
x+1
Câu 93. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A.
.
B.
.
C. 2017.
D.
.
2018
2018
2017
Câu 94. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.
D. −7.
Câu 95. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1

n2 − 3n
1 − 2n
n2 − 2
.
B.
u
=
.
C.
u
=
.
D. un =
.
A. un =
n
n
2
2
2
5n − 3n
(n + 1)
n
5n + n2
1
Câu 96. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.

Câu 97. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e−2 − 2; m = 1.
[ = 60◦ , S A ⊥ (ABCD).
Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

3
3

a 2
a 2
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
12
4
6
1 + 2 + ··· + n

Câu 99. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 101. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng

1637
23
1079
1728
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 102. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trang 8/10 Mã đề 1


Trong hai câu trên

A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.

Câu 103. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. 3.
D. −3.
Câu 104. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 6
a 5
a3 15
3
A.
.
B.
.
C. a 6.

D.
.
3
3
3
Câu 105. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
.
C. 2.
A. 2 13.
B.
D. 26.
13
Câu 106. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.

C. 24.

Câu 107. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − 2 .
C. −e.

e
e
7n2 − 2n3 + 1
Câu 108. Tính lim 3
3n + 2n2 + 1
2
7
C. - .
A. 0.
B. .
3
3

D. 144.
D. −

1
.
2e

D. 1.

Câu 109. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Khơng có.
D. Có một.
Câu 110. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?

un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 111. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. 3n3 lần.
D. n3 lần.
ln x p 2
1
Câu 112. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1

A. .
B. .
C. .
D. .
3
9
9
3
Câu 113. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối tứ diện đều.
Câu 114. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.
D. {2}.
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
4a 3
8a 3
a 3
8a 3

A.
.
B.
.
C.
.
D.
.
9
9
9
3
Trang 9/10 Mã đề 1


Câu 116. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
.
B.
.
C. a 3.
D.
.
A.

3
2
2
Câu 117. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
C. 12.
D. 30.
 π
Câu 118. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
A.
B. e .
C. 1.
D.
e .
e .
2
2
2
Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vuông góc với (ABCD). Thể tích khối chóp
3

3
3

a 3
a 3
a 2
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
x2 − 5x + 6
Câu 120. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
C. 1.
D. −1.
Câu 121. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.

Câu 122. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 123. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
√3
Câu 124. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. 3.
C. .
D. −3.
3
3
Câu 125. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
Câu 126.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
4

5
.
B.
.
A.
3
e

!n
1
C.
.
3

!n
5
D. − .
3

x−3
Câu 127. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.

C. +∞.

D. 0.


Câu 128. Hàm số y = x − 3x + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (−∞; 0) và (2; +∞). D. (0; 2).
3

2

Câu 129. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.
Câu 130. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n

C. 4.

D. 6.

B. lim qn = 0 (|q| > 1).
D. lim un = c (un = c là hằng số).

- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.

B

4.

5.

B

6.

7. A

8.

9.
13.

D
B

10. A


C
D

11.

B

12.

B

B

14. A

15.

C

16.

C

17.

C

18.

C


19.

B

21.

C

20.

D

22.

D

23. A

24. A

25. A

26. A

27. A

28.
D


29.

30.

31. A
D

34.

D

38.

39.

C

40. A

C

42. A

41. A
B

44.

45.


48.

49.

B

46.

D

47. A
C

D
B

50.

C

52.

51. A
53.

D

55.

54.


D

58.

59.

D

60. A

61.

D

62. A

63. A

64.

65.

D
B

56. A

C


57.

67.

B

36.

B

37. A

43.

B

32. A

33.
35.

C

D

B

66. A

C


69.

B
1

D


70. A

71. A
C

72.
74.
76.

73. A
75.

D

77.

B

78.

D


D
B

79.

C

81.

80. A

D

82.

B

83.

C

84.

B

85.

C


87.

C

C

86.
88.

B

90.
92.

C
B

96.

D
C

100. A

91.

D

D


95.

D

97.

D

99.

D

105.
D

106.
108.

111.

C

D
C

113.

B

115.


116. A

117.

118. A

119. A
D

120.

D

109. A
D

112.

B

107.

C

110.

D

103.


104. A

B
C

121.

122.

C

123. A

124.

C

125. A

126.

C

127.

128.

C


129.

130.

B

101. A

102.

114.

D

93.

94. A
98.

89.

B

2

D

D
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×